
CS311: 
Computational Theory

Lecture 1: Introduction – Ch 0

Dr. Manal Helal, Spring 2014.        http://moodle.manalhelal.com



Course Description
This  course  introduces  the  fundamental  mathematical 
models of computation. The course presents both inherent 
capabilities and limitations of these computational models 
as well as their relationships with formal languages. Topics 
to  be  covered  include:  Finite  automata  and  regular 
languages,  Deterministic  and  nondeterministic 
computations,  Context-free  grammars,  languages,  and 
pushdown  automata,  Turing  machines,  recursive  and 
recursively enumerable sets, undesirability, introduction to 
computability and complexity theory.



Course learning objectives

1. Computability:  Understand the capabilities 
and limitation of computational models. 

2. Hardness:  Classify problems according to 
their computational difficulty.  

3. Solvability:  Distinguish solvable problem 
from unsolvable ones 



Course Outline
1. Introduction - Ch 0 
2. Regular Languages - Ch 1 
3. Context-Free Languages - Ch 2 
4. The Church–Turing Thesis - Ch 3 
5. Decidability - Ch 4 
6. Reducibility - Ch 5 
7. Midterm Exam 
8. Recursion, Decidability, Reducability, Information Theory, Ch 6 
9. Time Complexity - Ch7 
10. Space Complexity - Ch8 
11. Intractability - Ch9 
12. Case Studies Presentations 
13. Advanced Topics - Ch10 
14. Spare/Revision 
15. Spare/Revision



Grading Scheme
20% - Midterm Exam – Week 7

15% - Lecture & Lab Quizzes

5% Section Submissions

10% - Assignments 

10% - Case Study– Week 12

40% - Final Exam – will be announced

Grading scale

  
A+ = 95%, ∝) A = [90%, 95%)  
A- = [85%, 90%) B+ = [80%, 85%)  
B = [75%, 80%) B- = [70%, 75%)  
C= [65%, 70%) C = [60%, 65%)  
C-= [55%, 60%) D = [50%, 55%) 



Textbook & References

Michael Sipser, Introduction to the Theory of 
Computation, 2nd or 3rd edition, Course technology, 
2005 or 2013.  

References 
John E. Hopcroft, Rajeev Motwani, and Jeffrey D. 
Ullman, Introduction to automata theory, languages, 
and computation, 3rd Edition, Addison-Wesley, 2006. 
Suprakash Datta’s slides (http://www.eecs.yorku.ca/
course_archive/2012-13/F/2001/)  



Rules
All communications through: http://moodle.manalhelal.com/course/view.php?id=7, please subscribe 
today!  

Attendance 

 Attendance is a must in all CCIT courses. A consecutive 3 absences will result in course forced 
withdrawal. 2 sections/labs count for 1 lecture. For example, a student absent for 2 lectures & 3 labs will 
be withdrawn. Medical and other excuses should be submitted to the department.  

Submissions 
 Assignments and all graded activities are given codes, such as: ass1, ass2, proj1, exer1, … etc, 
and announced allowed submission file extensions, and due dates. All submissions should be done 
electronically using moodle website. Files submitted should be named “code_StudentID.ext”, where code 
is the graded activity code, StudentID is your numerical AASTMT student ID, and ext is the announced 
allowed extension for each graded activity. If assignment 1 is coded as “ass1” and the allowed file 
extension is pdf, and your ID is 111238090, then the submitted file name should be: 
“ass1_111238090.pdf”. Due dates are final and there is a 10% reduction in the earned grade for each 
late day after the due date. After 5 days of the due date, no submissions are accepted, and model 
answer will be published on the website.  

Academic Honesty 
 First academic honesty violation will result in a disciplinary action ranging from zero mark in the 
graded activity and up to forced course withdrawal or forced academy dismissal, as regulated by 
AASTMT policies. This includes copied assignments/projects/papers, exam cheating of all types, 
inadequate individual participation in teamwork – more on course Description Document, and College 
and Academy Hand-Books.



Studying Plan & Teaching Method

•Every lecture is followed with exercise problems to be attempted in the Section and uploaded on 
moodle. 5% of the total course marks are for these section submissions. The section exercises will 
help deepen your understanding and students are expected to do their best to attempt them 
independently.  

•There are 4 assignments that will vary from analysis, design and programming requirements. 

•Asking questions are encouraged in this preference order: 

•In Moodle to have the question and the answer available to everyone in written form to get back to 
while studying. 

•In office hours,  

•then finally in lecture and section times to avoid lengthy interruptions and delay in course contents. 

•Please don’t accumulate material without full understanding and use the lecturer and the TA as 
much as you can to do your best. 

•Understanding theoretical concepts in lectures, attempting and submitting all section problems, doing 
all assignments, and engaging in a good case study, are the methods to study for the lecture/lab 
quizzes, midterm and final exams.



Lecture Learning Objectives

1. Introduce Automata, Computability, and 
Complexity 

2. Understand the Mathematical Notions and 
Terminology



Course Objectives - 1
Reasoning about computation: 

• Different computation models 

– Finite Automata 

– Pushdown Automata  

– Turing Machines 

• What these models can and cannot do



Course Objectives - 2

• What does it mean to say “there does not 
exist an algorithm for this problem”? 

• Reason about the hardness of problems 
• Eventually, build up a hierarchy of problems 

based on their hardness.



Course Objectives - 3

• We are concerned with solvability, NOT 
efficiency. 

• CS 312 (Computer Algorithms) efficiency issues.



Reasoning about Computation

• Computational problems may be 
• Solvable, quickly 
• Solvable in principle, but takes an infeasible 

amount of time (e.g. thousands of years on the 
fastest computers available) 

• (provably) not solvable



Theory of Computation: parts

• Computational problems may be Solvable, 
quickly 

• Solvable in principle, but takes an infeasible 
amount of time (e.g. thousands of years on the 
fastest computers available) 

• (provably) not solvable



Reasoning about Computation - 2

• Need formal reasoning to make credible 
conclusions 

• Mathematics is the language developed for 
formal reasoning 

• As far as possible, we want our reasoning to 
be intuitive



Next:

• Ch. 0:Set notation and languages 
• Sets and sequences  
• Tuples 
• Functions and relations  
• Graphs 
• Boolean logic: ⋁ ⋀ ¬ ⇔⇒ 

• Review of proof techniques 
• Construction, Contradiction, Induction



Topics you should know:

• Elementary set theory  
• Elementary logic 
• Functions 
• Graphs



Set Theory Review
• Definition 
• Notation:A={x|x ∈ N, x mod 3 = 1} 
  N = {1,2,3,...} 
• Union: A∪B 
• Intersection: A∩B 
• Complement: Ā 
• Cardinality: |A| 
• Cartesian Product: 
  A×B = { (x,y) | x∈A and y∈B}

Any order, and repetition is alright in sets, but not in 
sequences or tuples



Some Examples

• L<6 = { x | x ∈ N , x<6 }  

• Lprime = {x| x ∈ N, x is prime}  

• L<6 ∩ Lprime = {2,3,5} 
• ∑ = {0,1} 
• ∑×∑= {(0,0), (0,1), (1,0), (1,1)} 
• Formal: A∩B = { x | x∈A and x∈B}



Power Set

• “Set of all subsets”  
• Formal: P (A) = { S | S⊆ A} 
• Example: A = {x,y} 
• P (A) = { {} , {x} , {y} , {x,y} } 
• Power set 
• Note the different sizes: for finite sets  
• |P (A)| = 2|A| 

• |A×A| = |A|2



Functions: Review
• f:A→C 
• f:A×B→C 

Examples: 

• f:N→N,f(x)=2x 

• f:N×N→N,f(x,y)=x+y 
• f:A×B→A,A={a,b},B={0,1}

0 1

a a b

b b a

f : D → R  

Where D is Domain of input values, and R is Range of Output.



Functions: An Alternate View
• Functions as lists of pairs or k-tuples  
• E.g. f(x) = 2x 

{(1,2), (2,4), (3,6),....} 

• For the function in the table: 

{(a,0,a),(a,1,b),(b,0,b),(b,1,a)} 0 1

a a b

b b a



Example 1

N F(n)

0 1

1 2

2 3

3 4

4 0

• f(n) → (n+1) mod 5



Example 2

g 0 1 2 3

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2

• g(i, j) → (i+j) mod 4



Graphs: review
• Nodes, edges, weights  

• Undirected, directed 

• Cycles, trees 

• Connected



Next: Terminology
• Alphabets 
• Strings 

• Languages 

• Problems, decision problems



Alphabets
• An alphabet is a finite non-empty set. 
• An alphabet is generally denoted by the 

symbols Σ, Γ. 
• Elements of Σ, called symbols, are often 

denoted by lowercase letters, e.g., a,b,x,y,..



Strings (or words)
• Defined over an alphabet Σ 

• Is a finite sequence of symbols from Σ 

• Length of string w (|w|)  – length of sequence 

• ε– the empty string is the unique string with zero length. 

• Concatenation of w1 and w2 – copy of w1 followed by copy of w2 

• xk =xxxxx...x(k times) 

• wR- reversed string; e.g. if w =abcd then wR = dcba. 

• Lexicographic ordering (dictionary order): is a generalization of the way 
the alphabetical order of words is based on the alphabetical order of their 
component letters.



Languages
• A language over Σ is a set of strings over Σ 

• Σ* is the set of all strings over Σ 

• A language L over Σ is a subset of Σ* (L⊆Σ*) 

•  Typical examples: 

• Σ={0,1}, the possible words over Σ are the finite bit strings. 
• L = { x | x is a bit string with two zeros } 
• L={anbn |n∈N}  
• L = {1n | n is prime}



Concatenation of Languages
• Concatenation of two langauges: A•B = { xy | x∈A and y∈B } 

• Caveat: Do not confuse the concatenation of languages with 
the Cartesian product of sets. 

• For example, let A = {0,00} then 

• A•A = { 00, 000, 0000 } with |A•A|=3, 

• A×A = { (0,0), (0,00), (00,0), (00,00) } with |A×A|=4



Problems and Languages
• Problem: defined using input and output 

• – compute the shortest path in a graph 

• – sorting a list of numbers 

• – finding the mean of a set of numbers. 

• Decision Problem: output is yes/no (or 1/0) 

• Language: set of all inputs where output is yes



Historical Perspective
• Many models of computation from different fields 

• – Mathematical logic 

• – Linguistics 

• – Theory of Computation

Formal 

language 

theory



Logic: Review
• Boolean logic: ⋁ ⋀ ¬  

• Quantifiers: ∀, ∃ 

• statement: Suppose x ∈ N, y ∈ N. Then ∀x ∃y 
such that y > x 

• for any integer, there exists a larger integer 
• a ⇒b (is logically equivalent to) ¬ a ⋁ b 

• a ⇔ b is logically equivalent to (a ⇒ b) ⋀(b ⇒ a)



Logic: Review - 2
• Contrapositive and converse: 

• the converse of a ⇒ b is b ⇒ a 

• the contrapositive of a ⇒ b is ¬ b ⇒ ¬ a 

• Any statement is logically equivalent to its contrapositive, but not to its converse.



Example 1
Statement If two angles are congruent, then they have the same 

measure.

Converse If two angles have the same measure, then they are 
congruent.

Inverse If two angles are not congruent, then they do not 
have the same measure.

Contrapositive If two angles do not have the same measure, then 
they are not congruent.



Example 2
Statement If a quadrilateral is a rectangle, then it has two pairs 

of parallel sides.

Converse If a quadrilateral has two pairs of parallel sides, then 
it is a rectangle. (FALSE!)

Inverse If a quadrilateral is not a rectangle, then it does not 
have two pairs of parallel sides. (FALSE!)

Contrapositive If a quadrilateral does not have two pairs of parallel 
sides, then it is not a rectangle.



Logic: Review - 3
• Negation of statements 

• ¬(∀x ∃y y > x) “=“ ∃x ∀y y ≤ x 

(LHS: negation of “for any integer, there exists a 
larger integer”, RHS: there exists a largest 
integer) 

• TRY: ¬ (a ⇒ b) = ?



Logic: Review - 4
• Understand quantifiers 

• ∀x ∃y P(y, x) is not the same as 

∃y ∀x P(y, x) 

• Consider P(y,x ): x ≤ y. 
• ∀x ∃y x ≤ y is TRUE over N (set y = x + 1) 

• ∃x ∀y x ≤ y is FALSE over N (there is no largest number in N)



Input/Output vs. Decision Problems

• Input/output problem: “find the mean of n integers” 

• Decision Problem: output is either yes or no 

• “Is the mean of the n numbers equal to k ?” 
• You can solve the decision problem if and only if you can 

solve the input/output problem.



Example – Code Reachability

• Code Reachability Problem: 

• – Input: Java computer code 

• – Output: Lines of unreachable code. 

• Code Reachability Decision Problem: 

• – Input: Java computer code and line number 

• – Output: Yes, if the line is reachable for some input, no 
otherwise. 

• Code Reachability Language: 

• – Set of strings that denote Java code and reachable line.



Example – String Length

• Decision Problem: 

• – Input: String w 

• – Output: Yes, if |w| is even 

• Language: 

• – Set of all strings of even length.



Relationship to Functions

• Use the set of k-tuples view of functions from before. 

• A function is a set of k-tuples (words) and therefore a 
language. 

• Shortest paths in graphs – the set of shortest paths is a set 
of paths (words) and therefore a language.



Recognizing Languages

• Automata/Machines accept languages. 

• Also called “recognizing languages”. 

• The power of a computing model is related to, and described 
by, the languages it accepts/recognizes. 

• Tool for studying different models



Recognizing Languages - 2

• Let L be a language ⊆ S 

• a machine M recognizes L if



Recognizing Languages - 3

• Minimal spanning tree problem solver:
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Recognizing languages - 3
• Minimal spanning tree problem solver

Yes/no
cost

tree



Recognizing Languages - 4

• Tools from language theory 

• Expressibility of languages 

• Fascinating relationship between the complexity of problems 
and power of languages



Proofs

• What is a proof? 

• Does a proof need mathematical symbols? 

• What makes a proof incorrect? 

• How does one come up with a proof?



Proof Techniques (Sipser 0.4)

• Proof by cases. 

• Proof by contrapositive  

• Proof by contradiction  

• Proof by construction 

• Proof by induction 

• Others .....



Proof by Cases

• If n is an integer, then n(n+1)/2 is an integer 

• Case 1: n is even. 

or n = 2a, for some integer a 

So n(n+1)/2 = 2a*(n+1)/2 = a*(n+1), which is an integer. 

• Case 2: n is odd. 

n+1 is even, or n+1 = 2a, for an integer a So n(n+1)/2 = n*2a/2 = 
n*a, 

which is an integer.



Proof by Contrapositive

• If x2 is even, then x is even 

• Proof 1 (DIRECT): x2 =x*x=2a 

So 2 divides x. 

• Proof 2: prove the contrapositive! 

if x is odd, then x2 is odd.  

x=2b+1.So x2=4b2 +4b+1(odd)



Proof by Contradiction
• √2 is irrational 

• Suppose √2 is rational. Then √2 = p/q, such that p, q have no 
common factors. Squaring : 2 = p2 / q2 

• and transposing : p2 = 2q2 (even number) 

So, p is even Or p = 2x for some integer x 

So 4x2 = 2q2 or q2 = 2x2 

So, q is even 

So, p,q are both even – they have a common factor of 2. 
CONTRADICTION. 

• So √2 is NOT rational. Q.E.D.

"quod erat demonstrandum” 
"which was to be demonstrated".



Proof by construction

• There exists irrational b,c, such that bc is rational 

• Consider √2√2. Two cases are possible: 

• Case1:√2√2 is rational–DONE(b=c=√2). 

• Case 2: √2√2 is irrational – Let b = √2√2, c = √2. Then bc = 
(√2√2) √2 = (√2)√2× √2  = (√2)2 = 2



Debug this “proof”

• For each positive real number a, there exists a real number x 
such that x2 >a 

• Proof: We know that 2a > a So(2a)2 =4a2 >a 

• So use x = 2a.



Proof by Induction

• Format: 

• Inductive hypothesis,  
• Base case,  
• Inductive step.



Proof by Induction
• Prove: For any n ∈ N, n3-n is divisible by 3. 

• IH: P(n): For any n ∈ N, f(n)=n3-n is divisible by 3.  

• Base case: P(1) is true, because f(1)=0. 

• Inductive step: 

• Assume P(n) is true. Show P(n+1) is true.  
• Observe that f(n+1) – f (n) = ((n+1)3-(n+1))-(n3-n) = 3(n2 + n). So f(n

+1) – f(n) is divisible by 3.  
• Since P(n) is true, f(n) is divisible by 3. So f(n+1) is divisible by 3. 
• Therefore, P(n+1) is true. 

• Exercise: give a direct proof.



Next: Finite Automata

Ch. 1: Deterministic finite automata (DFA) 

We will study languages recognized by finite 
automata.


