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Lecture Learning Objectives

1. Understand Regular Languages and Regular 
Expressions 

2. Express Regular Languages using DFAs, and 
NFAs. 

3. Convert among equivalently powerful 
notations for a language, including among 
DFAs, NFAs, and regular expressions.



Regular Languages

1. The language recognized by a finite 
automaton M is denoted by L(M). 

2. A regular language is a language for which 
there exists a recognizing finite automaton.



Two DFA Questions

1. Given the description of a finite automaton M 
= (Q, ∑, δ,q,F), what is the language L(M) that 
it recognizes? 

2. In general, what kind of languages can be 
recognized by finite automata? (What are the 
regular languages?)



Complement of a Regular Language

1. Swap the accepting and non-accept states of 
M to get M’. 

2. The complement of a regular language is 
regular.



FORMAL DEFINITION OF A 
REGULAR EXPRESSION

Say that R is a regular expression if R is:  
1.a for some a in the alphabet Σ, 
2.ε, 
3.∅, 

4.(R1 ∪ R2), where R1 and R2 are regular expressions,  

5. (R1 ◦ R2), where R1 and R2 are regular expressions, 
6. (R1

∗), where R1 is a  
 regular expression. 

 1. a represent the languages {a}
2. ε represent the languages {ε}         
3. ∅ represents the empty language

4, 5, and 6, the expressions represent the 
languages obtained by taking the union or 
concatenation of the languages R1 and R2, 
or the star of the language R1, respectively. 



RE Properties
• R+ ∪ ε = R∗ 

• R ∪ ∅ = R. 

• R ◦ ε = R. 

• R ∪ ε may not equal R 

• R ◦ ∅ may not equal R 



Definitions

THEOREM: A language is regular if and only if 
some regular expression describes it. 

Lemma: If a language is described by a regular 
expression, then it is regular.



Regular Expression to NFA
Claim: If L=L(e) for some RE e, then L= L(M) for some 

NFA M 
Construction: Use inductive definition 
1. R=a, with a ∈Ʃ,  
2. R=Ɛ,  
3. R=Ø,  
4. R = (R1∪R2), with R1 and R2 regular 
expressions 
5. R = (R1◦R2), with R1 and R2 regular expressions 
6. R=(R1*),with R1 a regular expression



Example
Convert RE  

(ab ∪ a)∗  

to an NFA:



Terminology: Closure

A set is defined to be closed under an operation if that 
operation on members of the set always produces a 
member of the same set. (adapted from wikipedia) 
E.g.:The integers are closed under addition, 
multiplication. 
•The integers are not closed under division 
•Σ* is closed under concatenation 
•A set can be defined by closure -- Σ* is called the 
(Kleene) closure of Σ under concatenation.



Terminology: Regular Operations

The regular operations are:  
1.Union 
2.Concatenation 
3.Star (Kleene Closure): For a language A, 
A* = {w1w2w3 … wk| k ≥ 0, and each wi ∈A}



Closure Properties

Set of regular languages is closed under: 
– Union 
– Concatenation 
– Star (Kleene Closure)



Union of Two Languages

Theorem 1.12: If A1 and A2 are regular languages, 
then so is A1 ∪ A2. 
(The regular languages are ‘closed’ under the union 
operation.) 
Proof idea: A1 and A2 are regular, hence there are two 
DFA M1 and M2, with A1=L(M1) and A2=L(M2). Out of 
these two DFA, we will make a third automaton M3 
such that L(M3) = A1 ∪ A2.



How do we combine DFA?

Q: Can we design a DFA that somehow “simulates” 
them both and accepts when at least one of them 
accepts? 
Ans: Yes, through a clever construction.



Proof Union-Theorem (1)

M1=(Q1, ∑, δ1,q1,F1) and M2=(Q2, ∑, δ2,q2,F2) Define M3 = 
(Q3, ∑, δ3,q3,F3) by: 

Q3 = Q1×Q2 = {(r1,r2) | r1∈Q1 and r2∈Q2}  
δ3((r1,r2),a) = (δ1(r1,a), δ2(r2,a)) 

q3 = (q1,q2) 

F3 = {(r1,r2) | r1∈F1 or r2∈F2}



Proof Union-Theorem (2)

The automaton M3 = (Q3, ∑, δ3,q3,F3) runs M1 and M2 in 
‘parallel’ on a string w. 

In the end, the final state (r1,r2) ‘knows’ 
if w∈L1 (via r1∈F1?) and if w∈L2 (via r2∈F2?) 

The accepting states F3 of M3 are such that w∈L(M3) if 

and only if w∈L1 or w∈L2, for: F3 = {(r1,r2) | r1∈F1 or r2∈F2}.



Concatenation of L1 and L2

Definition: L1◦ L2 = { xy | x∈L1 and y∈L2 } Example: {a,b} 
◦ {0,11} = {a0,a11,b0,b11} 

Theorem 1.13: If L1 and L2 are regular languages, then 
so is L1◦L2. 

(The regular languages are ‘closed’ under 
concatenation.)



Proving Concatenation Theorem

Consider the concatenation: {1,01,11,001,011,...} ◦ 
{0,000,00000,...} (That is: the bit strings that end with a 
“1”, followed by an odd number of 0’s.) 

Problem is: given a string w, how does the automaton 
know where the L1 part stops and the L2 substring 
starts? 

We need an M with ‘lucky guesses’.



Non-Determinism

Nondeterministic machines are capable of being lucky, 
no matter how small the probability. 

A nondeterministic finite automaton has transition 
rules/possibilities like



A Nondeterministic Automaton

This automaton accepts “0110”, because there is a 
possible path that leads to an accepting state, namely: 
q1 → q1 → q2 → q3 → q4 → q4



A Nondeterministic Automaton

The string 1 gets rejected: on “1” the automaton can 
only reach: {q1,q2,q3}.



Nondeterminism ~ Parallelism

For any (sub)string w, the 
nondeterministic automaton can be in 
a set of possible states. 
If the final set contains an accepting 
state, then the automaton accepts the 
string. 

“The automaton processes the input in 
a parallel fashion. Its computational 
path is no longer a line, but a tree.”



Closure Under Regular Operations

Union (new proof): 

Construction of an 
NFA N to recognize A1 
∪ A2



Closure under Regular Operations

Concatenation: 

Construction of an 
NFA N to recognize A1 
◦ A2



Closure under Regular Operations

Star: 

Construction of an 
NFA N to recognize A*


