

# CS311: Computational Theory

Lecture 3: Regular Languages – Ch 1 – Cont'd

Dr. Manal Helal, Spring 2014.

http://moodle.manalhelal.com

# Lecture Learning Objectives

- 1. Understand Regular Languages and Regular Expressions
- 2. Express Regular Languages using DFAs, and NFAs.
- 3. Convert among equivalently powerful notations for a language, including among DFAs, NFAs, and regular expressions.

# **Regular Languages**

- 1. The language recognized by a finite automaton M is denoted by L(M).
- 2. A regular language is a language for which there exists a recognizing finite automaton.

# **Two DFA Questions**

- 1. Given the description of a finite automaton M =  $(Q, \sum, \delta, q, F)$ , what is the language L(M) that it recognizes?
- 2. In general, what kind of languages can be recognized by finite automata? (What are the regular languages?)

### **Complement of a Regular Language**

- 1. Swap the accepting and non-accept states of M to get M'.
- 2. The complement of a regular language is regular.

#### FORMAL DEFINITION OF A REGULAR EXPRESSION

Say that R is a **regular expression** if R is: 1.a for some a in the alphabet  $\Sigma$ ,

2.ε, 3.Ø,

1. a represent the languages {a}

ε represent the languages {ε}

3. Ø represents the empty language

4.( $R_1 \cup R_2$ ), where  $R_1$  and  $R_2$  are regular expressions,

**5.**  $(R_1 \circ R_2)$ , where  $R_1$  and  $R_2$  are regular expressions,

**6.**  $(R_1^*)$ , where  $R_1$  is a regular expression.

4, 5, and 6, the expressions represent the languages obtained by taking the union or concatenation of the languages  $R_1$  and  $R_2$ , or the star of the language  $R_1$ , respectively

## **RE** Properties

- $R^+ \cup \varepsilon = R^*$
- $R \cup \emptyset = R$ .
- $R \circ \varepsilon = R$ .
- R υ ε may not equal R
- R Ø may not equal R

### Definitions

THEOREM: A language is regular if and only if some regular expression describes it.

Lemma: If a language is described by a regular expression, then it is regular.

#### **Regular Expression to NFA** Claim: If L=L(e) for some RE e, then L= L(M) for some NFA M Construction: Use inductive definition 1. R=a, with $a \in \Sigma$ , 2. R=E. 2. 3. R=Ø, 3. 4. $R = (R_1 \cup R_2)$ , with $R_1$ and $R_2$ regular 4,5,6: similar to closure of RL under expressions 5. $R = (R_1 \circ R_2)$ , with $R_1$ and $R_2$ regular expressions 6. $R=(R_1^*)$ , with $R_1$ a regular expression



a

b

ab

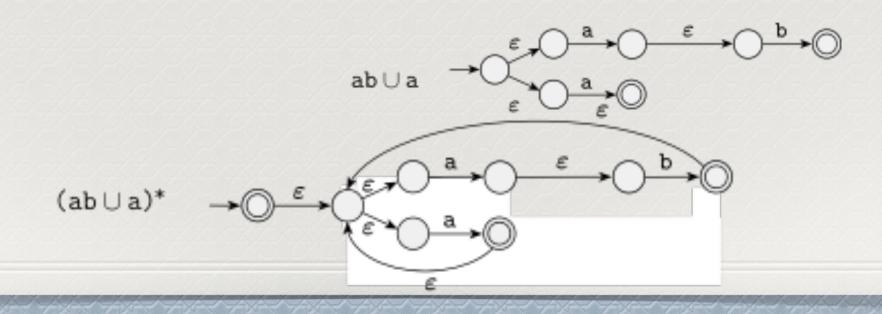
#### Convert RE

(ab u a)\*

to an NFA:



b D



### Terminology: Closure

A set is defined to be closed under an operation if that operation on members of the set always produces a member of the same set. (adapted from wikipedia) E.g.:The integers are closed under addition, multiplication.

- •The integers are not closed under division
- • $\Sigma^*$  is closed under concatenation
- •A set can be defined by closure --  $\Sigma^*$  is called the (Kleene) closure of  $\Sigma$  under concatenation.

### **Terminology: Regular Operations**

The regular operations are: 1.Union 2.Concatenation 3.Star (Kleene Closure): For a language A,  $A^* = \{w_1 w_2 w_3 \dots w_k | k \ge 0, and each w_i \in A\}$ 

### **Closure Properties**

Set of regular languages is closed under:

- Union
- Concatenation
- Star (Kleene Closure)

#### Union of Two Languages

**Theorem 1.12:** If  $A_1$  and  $A_2$  are regular languages, then so is  $A_1 \cup A_2$ .

(The regular languages are 'closed' under the union operation.)

Proof idea:  $A_1$  and  $A_2$  are regular, hence there are two DFA  $M_1$  and  $M_2$ , with  $A_1=L(M_1)$  and  $A_2=L(M_2)$ . Out of these two DFA, we will make a third automaton  $M_3$ such that  $L(M_3) = A_1 \cup A_2$ .

#### How do we combine DFA?

Q: Can we design a DFA that somehow "simulates" them both and accepts when at least one of them accepts?

Ans: Yes, through a clever construction.

#### Proof Union-Theorem (1)

 $M_1=(Q_1, \sum, \delta_1, q_1, F_1)$  and  $M_2=(Q_2, \sum, \delta_2, q_2, F_2)$  Define  $M_3 = (Q_3, \sum, \delta_3, q_3, F_3)$  by:

$$\begin{aligned} Q_3 &= Q_1 \times Q_2 = \{(r_1, r_2) \mid r_1 \in Q_1 \text{ and } r_2 \in Q_2 \} \\ \delta_3((r_1, r_2), a) &= (\delta_1(r_1, a), \delta_2(r_2, a)) \end{aligned}$$

 $q_3 = (q_1, q_2)$ 

 $F_3 = \{(r_1, r_2) \mid r_1 \in F_1 \text{ or } r_2 \in F_2\}$ 

#### Proof Union-Theorem (2)

The automaton  $M_3 = (Q_3, \sum, \delta_3, q_3, F_3)$  runs  $M_1$  and  $M_2$  in 'parallel' on a string w.

In the end, the final state  $(r_1, r_2)$  'knows' if  $w \in L_1$  (via  $r_1 \in F_1$ ?) and if  $w \in L_2$  (via  $r_2 \in F_2$ ?)

The accepting states  $F_3$  of  $M_3$  are such that  $w \in L(M_3)$  if and only if  $w \in L_1$  or  $w \in L_2$ , for:  $F_3 = \{(r_1, r_2) \mid r_1 \in F_1 \text{ or } r_2 \in F_2\}$ .

### Concatenation of L<sub>1</sub> and L<sub>2</sub>

Definition:  $L_{1^{\circ}} L_2 = \{xy \mid x \in L_1 \text{ and } y \in L_2\}$  Example:  $\{a, b\}$  $\circ \{0, 11\} = \{a0, a11, b0, b11\}$ 

**Theorem 1.13:** If  $L_1$  and  $L_2$  are regular languages, then so is  $L_{1^\circ}L_2$ .

(The regular languages are 'closed' under concatenation.)

#### **Proving Concatenation Theorem**

Consider the concatenation: {1,01,11,001,011,...} • {0,000,00000,...} (That is: the bit strings that end with a "1", followed by an odd number of 0's.)

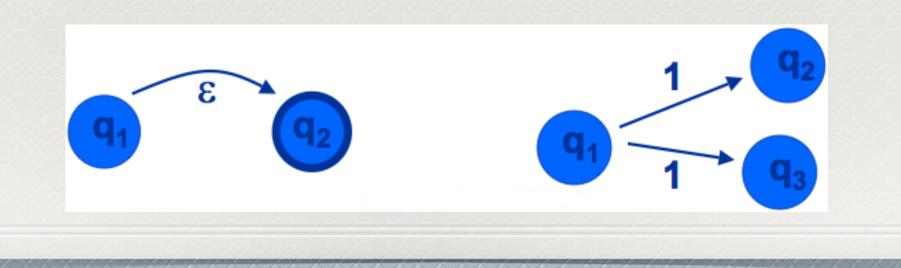
Problem is: given a string w, how does the automaton know where the  $L_1$  part stops and the  $L_2$  substring starts?

We need an M with 'lucky guesses'.

#### **Non-Determinism**

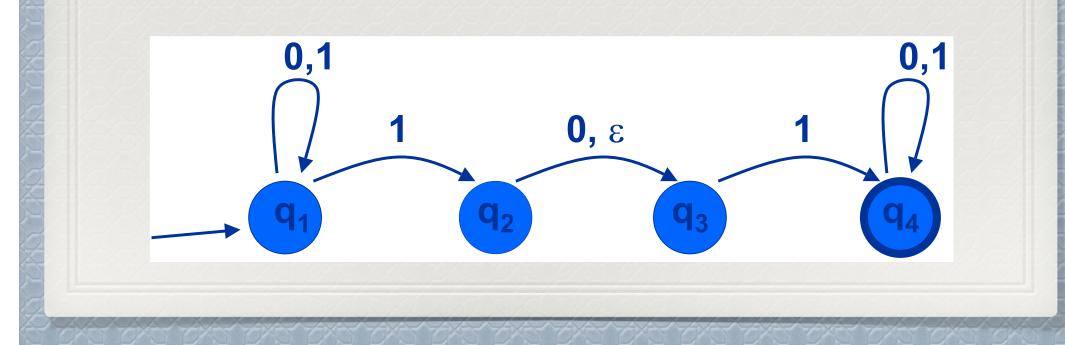
Nondeterministic machines are capable of being lucky, no matter how small the probability.

A nondeterministic finite automaton has transition rules/possibilities like



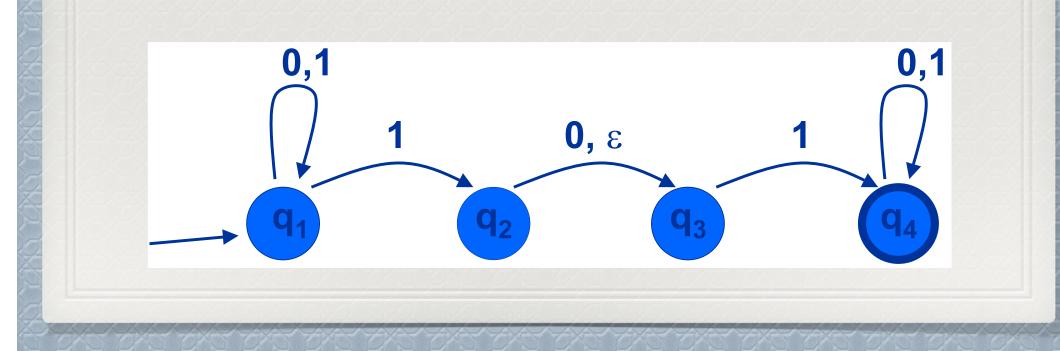
#### **A Nondeterministic Automaton**

This automaton accepts "0110", because there is a possible path that leads to an accepting state, namely:  $q_1 \rightarrow q_1 \rightarrow q_2 \rightarrow q_3 \rightarrow q_4 \rightarrow q_4$ 



#### **A Nondeterministic Automaton**

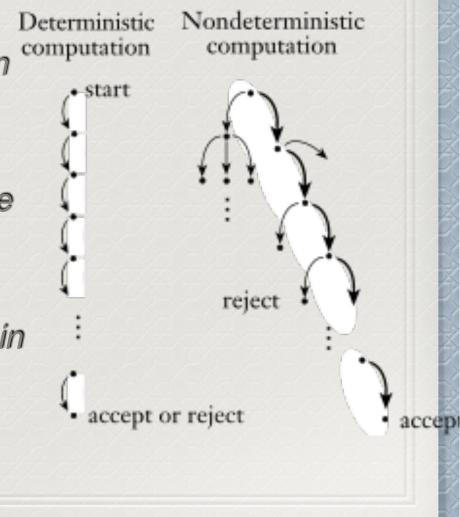
The string 1 gets rejected: on "1" the automaton can only reach:  $\{q_1, q_2, q_3\}$ .



#### Nondeterminism ~ Parallelism

For any (sub)string w, the nondeterministic automaton can be in a set of possible states. If the final set contains an accepting state, then the automaton accepts the string.

"The automaton processes the input in a parallel fashion. Its computational path is no longer a line, but a tree."



### **Closure Under Regular Operations**

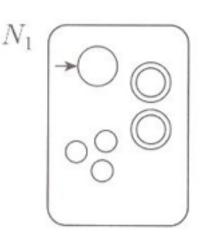
N

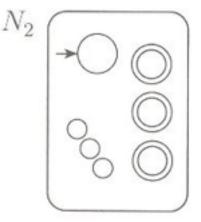
ε

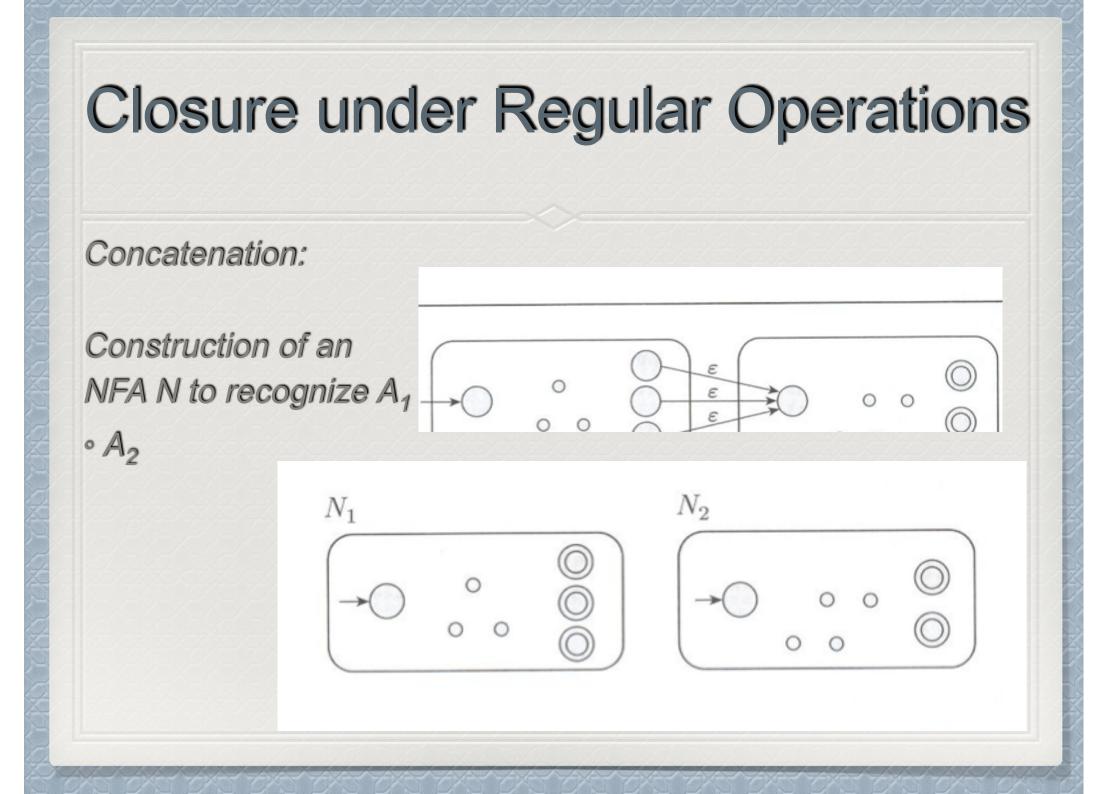
 $\varepsilon$ 

Union (new proof):

Construction of an NFA N to recognize A. v A<sub>2</sub>







### **Closure under Regular Operations**

N

Star:

Construction of an NFA N to recognize A\*

