CS311:
 Computational Theory

Lecture 3: Regular Languages - Ch 1 - Cont'd

Lecture Learning Objectives

1. Understand Regular Languages and Regular Expressions
2. Express Regular Languages using DFAs, and NFAs.
3. Convert among equivalently powerful notations for a language, including among DFAs, NFAs, and regular expressions.

Regular Languages

1. The language recognized by a finite automaton M is denoted by $L(M)$.
2. A regular language is a language for which there exists a recognizing finite automaton.

Two DFA Questions

1. Given the description of a finite automaton M $=(Q, \Sigma, \delta, q, F)$, what is the language $L(M)$ that it recognizes?
2. In general, what kind of languages can be recognized by finite automata? (What are the regular languages?)

Complement of a Regular Language

1. Swap the accepting and non-accept states of M to get M^{\prime}.
2. The complement of a regular language is regular.

FORMAL DEFINITION OF A REGULAR EXPRESSION

Say that R is a regular expression if R is:
1.a for some a in the alphabet Σ,
2. ε,
3.ø,
4. ($R_{1} \cup R_{2}$), where R_{1} and R_{2} are regular expressions,
5. $\left(R_{1} \circ R_{2}\right)$, where R_{1} and R_{2} are regular expressions,
6. $\left(R_{1}{ }^{*}\right)$, where R_{1} is a
regular expression.

RE Properties

- $R^{+} \cup \varepsilon=R^{*}$
- $R \cup \varnothing=R$.
- $R \circ \varepsilon=R$.
- $R \cup \varepsilon$ may not equal R
- $R \circ \varnothing$ may not equal R

Definitions

THEOREM: A language is regular if and only if some regular expression describes it.

Lemma: If a language is described by a regular expression, then it is regular.

Regular Expression to NFA

Claim: If $L=L(e)$ for some $R E$ e, then $L=L(M)$ for some NFA M
Construction: Use inductive definition

1. $R=a$, with $a \in \Sigma$,
2. $R=\mathcal{E}$,
3. $R=\varnothing$,
4. $R=\left(R_{1} \cup R_{2}\right)$, with R_{1} and R_{2} regular expressions

4,5,6: similar to closure of RL under regular operations.
5. $R=\left(R_{1} \cdot R_{2}\right)$, with R_{1} and R_{2} regular expregular op
6. $R=\left(R_{1}{ }^{*}\right)$, with R_{1} a regular expression

Example

Convert RE

$$
\mathrm{a} \quad \rightarrow \stackrel{\mathrm{a}}{ } \text { (O) }
$$

$(a b \cup a)^{*}$
to an NFA:

Terminology: Closure

A set is defined to be closed under an operation if that operation on members of the set always produces a member of the same set. (adapted from wikipedia) E.g.:The integers are closed under addition, multiplication.

- The integers are not closed under division
- Σ^{*} is closed under concatenation
- A set can be defined by closure -- Σ^{*} is called the (Kleene) closure of Σ under concatenation.

Terminology: Regular Operations

The regular operations are:
1.Union
2. Concatenation
3.Star (Kleene Closure): For a language A,
$A^{*}=\left\{w_{1} w_{2} w_{3} \ldots w_{k} \mid k \geq 0\right.$, and each $\left.w_{j} \in A\right\}$

Closure Properties

Set of regular languages is closed under:

- Union
- Concatenation
- Star (Kleene Closure)

Union of Two Languages

Theorem 1.12: If A_{1} and A_{2} are regular languages, then so is $A_{1} \cup A_{2}$.
(The regular languages are 'closed' under the union operation.)
Proof idea: A_{1} and A_{2} are regular, hence there are two DFA M_{1} and M_{2}, with $A_{1}=L\left(M_{1}\right)$ and $A_{2}=L\left(M_{2}\right)$. Out of these two DFA, we will make a third automaton M_{3} such that $L\left(M_{3}\right)=A_{1} \cup A_{2}$.

How do we combine DFA?

Q: Can we design a DFA that somehow "simulates" them both and accepts when at least one of them accepts?
Ans: Yes, through a clever construction.

Proof Union-Theorem (1)

$M_{1}=\left(Q_{1}, \sum, \delta_{1}, q_{1}, F_{1}\right)$ and $M_{2}=\left(Q_{2}, \sum, \delta_{2}, q_{2}, F_{2}\right)$ Define $M_{3}=$ $\left(Q_{3}, \sum, \delta_{3}, q_{3}, F_{3}\right)$ by:
$Q_{3}=Q_{1} \times Q_{2}=\left\{\left(r_{1}, r_{2}\right) \mid r_{1} \in Q_{1}\right.$ and $\left.r_{2} \in Q_{2}\right\}$
$\bar{\delta}_{3}\left(\left(r_{1}, r_{2}\right), a\right)=\left(\delta_{1}\left(r_{1}, a\right), \delta_{2}\left(r_{2}, a\right)\right)$
$q_{3}=\left(q_{1}, q_{2}\right)$
$F_{3}=\left\{\left(r_{1}, r_{2}\right) \mid r_{1} \in F_{1}\right.$ or $\left.r_{2} \in F_{2}\right\}$

Proof Union-Theorem (2)

The automaton $M_{3}=\left(Q_{3}, \sum, \delta_{3}, q_{3}, F_{3}\right)$ runs M_{1} and M_{2} in 'parallel' on a string w.

In the end, the final state $\left(r_{1}, r_{2}\right)$ 'knows' if $w \in L_{1}\left(\right.$ via $r_{1} \in F_{1}$?) and if $w \in L_{2}$ (via $r_{2} \in F_{2}$?)

The accepting states F_{3} of M_{3} are such that $w \in L\left(M_{3}\right)$ if and only if $w \in L_{1}$ or $w \in L_{2}$, for: $F_{3}=\left\{\left(r_{1}, r_{2}\right) \mid r_{1} \in F_{1}\right.$ or $\left.r_{2} \in F_{2}\right\}$.

Concatenation of L_{1} and L_{2}

Definition: $L_{1} \circ L_{2}=\left\{x y \mid x \in L_{1}\right.$ and $\left.y \in L_{2}\right\}$ Example: $\{a, b\}$ $\{0,11\}=\{a 0, a 11, b 0, b 11\}$

Theorem 1.13: If L_{1} and L_{2} are regular languages, then so is $L_{1} L_{2}$.
(The regular languages are 'closed' under concatenation.)

Proving Concatenation Theorem

Consider the concatenation: $\{1,01,11,001,011, \ldots\} \cdot$ $\{0,000,00000, \ldots\}$ (That is: the bit strings that end with a "1", followed by an odd number of 0's.)

Problem is: given a string w, how does the automaton know where the L_{1} part stops and the L_{2} substring starts?

We need an M with 'lucky guesses'.

Non-Determinism

Nondeterministic machines are capable of being lucky, no matter how small the probability.

A nondeterministic finite automaton has transition rules/possibilities like

A Nondeterministic Automaton

This automaton accepts "0110", because there is a possible path that leads to an accepting state, namely: $q_{1} \rightarrow q_{1} \rightarrow q_{2} \rightarrow q_{3} \rightarrow q_{4} \rightarrow q_{4}$

A Nondeterministic Automaton

The string 1 gets rejected: on "1" the automaton can only reach: $\left\{q_{1}, q_{2}, q_{3}\right\}$.

Nondeterminism ~ Parallelism

For any (sub)string w, the nondeterministic automaton can be in a set of possible states. If the final set contains an accepting state, then the automaton accepts the string.
"The automaton processes the input in a parallel fashion. Its computational path is no longer a line, but a tree."

Deterministic $\begin{gathered}\text { Nondeterministic } \\ \text { computation }\end{gathered}$ computation

computation

Closure Under Regular Operations

Union (new proof):

Construction of an NFA N to recognize A. $\cup A_{2}$

Closure under Regular Operations

Concatenation:

Construction of an NFA N to recognize A_{1}

- A_{2}

Closure under Regular Operations

Star:

Construction of an NFA N to recognize A^{*}

