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Lecture Learning Objectives

1. Use Regular Languages in problem solving



Decision Procedures

A decision procedure is an algorithm whose result is a 
Boolean value.  It must: 

    ● Halt 
    ● Be correct 

Important decision procedures exist for regular languages: 

    ● Given an FSM M and a string s, does M accept s?   
    ● Given a regular expression α and a string w, does α  
     generate w? 



Membership

We can answer the membership question by running an 
FSM.  

But we must be careful:



Membership

decideFSM(M: FSM, w: string) =  
     If ndfsmsimulate(M, w) accepts then return True  
      else return False. 

decideregex(α: regular expression, w: string) =  
     From α, use regextofsm to construct an FSM M  
  such that L(α) = L(M). 
     Return decideFSM(M, w). 



Emptiness and Finiteness 

● Given an FSM M, is L(M) empty?   

● Given an FSM M, is L(M) = ΣM*? 

● Given an FSM M, is L(M) finite?   

   ● Given an FSM M, is L(M) infinite?  

   ● Given two FSMs M1 and M2, are they equivalent? 



Emptiness

Given an FSM M, is L(M) empty? 

•    The simulation approach:

•    The graph analysis approach:



Emptiness

Given an FSM M, is L(M) empty? 

•    The graph analysis approach:

1.  Mark all states that are reachable via some path from the  
 start state of M. 
2.  If at least one marked state is an accepting state, return False.  

Else return True.



Emptiness

Given an FSM M, is L(M) empty? 

•    The simulation approach:

1.  Let Mʹ = ndfsmtodfsm(M). 
2.  For each string w in Σ* such that |w| < |KMʹ | do: 
        Run decideFSM(Mʹ, w).  
3.  If Mʹ accepts at least one such string, return False. Else 

return True.



Totality

•     Given an FSM M, is L(M) = ΣM*?
1. Construct Mʹ  to accept ¬L(M). 
2. Return emptyFSM(Mʹ ).



Finiteness

Given an FSM M, is L(M) finite? 

•    The graph analysis approach:



Finiteness

Given an FSM M, is L(M) finite? 

•    The graph analysis approach:

The mere presence of a loop does not guarantee that L(M) is 
infinite.  The loop might be: 

•  labeled only with ε, 
•  unreachable from the start state, or 
•  not on a path to an accepting state.



Finiteness

Given an FSM M, is L(M) finite? 

•    The graph analysis approach:

1. Mʹ = ndfsmtodfsm(M). 
2. Mʹʹ = minDFSM(Mʹ).  
3. Mark all states in Mʹʹ  that are on a path to an accepting 
  state. 
4. Considering only marked states, determine whether there 
  are any cycles in Mʹʹ. 
5. If there are cycles, return True.  Else return False.



Finiteness

Given an FSM M, is L(M) finite? 

•    The simulation approach:

1.  Mʹ = ndfsmtodfsm(M).  
2.  For each string w in Σ* such that |KMʹ | ≤ w ≤ 2⋅|KMʹ | - 1 do: 
        Run decideFSM(Mʹ, w).  
3.  If Mʹ accepts at least one such string, return False. 
 Else return True.



Equivalence 

● Given two FSMs M1 and M2, are they equivalent?  In  
  other words, is L(M1) = L(M2)?  We can describe two  
  different algorithms for answering this question.  



Equivalence 

● Given two FSMs M1 and M2, are they equivalent?  In  
  other words, is L(M1) = L(M2)?    

equalFSMs1(M1: FSM, M2: FSM) =  
   1. M1ʹ = buildFSMcanonicalform(M1). 
   2. M2ʹ = buildFSMcanonicalform(M2). 
   3. If M1ʹ and M2ʹ are equal, return True, else return False.



Equivalence 

● Given two FSMs M1 and M2, are they equivalent?  In  
  other words, is L(M1) = L(M2)?   

     equalFSMs2(M1: FSM, M2: FSM) = 
  1. Construct MA to accept L(M1) - L(M2).   
  2. Construct MB to accept L(M2) - L(M1). 
  3. Construct MC to accept L(MA) ∪ L(MB). 
  4. Return emptyFSM(MC).

Observe that M1 and M2 are equivalent iff: 

  (L(M1) - L(M2)) ∪ (L(M2) - L(M1)) = ∅. 



Minimality 

● Given DFSM M, is M minimal? 



Minimality 

● Given DFSM M, is M minimal? 

1. Mʹ = minDFSM(M).   
2. If |KM| = |KMʹ | return True; else return False.



Answering Specific Questions 

Given two regular expressions α1 and α2, is: 

  (L(α1) ∩ L(α2)) – {ε} ≠ ∅?



Answering Specific Questions 

Given two regular expressions α1 and α2, is: 

  (L(α1) ∩ L(α2)) – {ε} ≠ ∅?

1. From α1, construct an FSM M1 such that L(α1) = L(M1). 
2. From α2, construct an FSM M2 such that L(α2) = L(M2). 
3. Construct Mʹ such that L(Mʹ ) = L(M1) ∩ L(M2). 
4. Construct Mε such that L(Mε) = {ε}. 
5. Construct Mʹʹ such that L(Mʹʹ ) = L(Mʹ ) - L(Mε). 
6. If L(Mʹʹ ) is empty return False; else return True.



Answering Specific Questions 

Given two regular expressions α1 and α2, are there at least 
3 strings that are generated by both of them?



Summary of Algorithms 

● Operate on FSMs without altering the language that is 
accepted: 

       ● Ndfsmtodfs 
       ● MinDFSM  



Summary of Algorithms 

● Compute functions of languages defined as FSMs: 
       ● Given FSMs M1 and M2, construct a FSM M3 such that  
   L(M3) = L(M2) ∪ L(M1). 

● Given FSMs M1 and M2, construct a new FSM M3 such that 
   L(M3) =  L(M2) L(M1). 
● Given FSM M, construct an FSM M* such that  
   L(M*) = (L(M))*. 
● Given a DFSM M, construct an FSM M* such that 
    L(M*) = ¬L(M). 
● Given two FSMs M1 and M2, construct an FSM M3 such that  
   L(M3) =  L(M2) ∩ L(M1). 
● Given two FSMs M1 and M2, construct an FSM M3 such that  
   L(M3) =  L(M2) - L(M1). 
● Given an FSM M, construct an FSM M* such that  
   L(M*) = (L(M))R, (i.e., the reverse of L(M)). 
● Given an FSM M, construct an FSM M* that accepts  
   letsub(L(M)), where letsub is a letter substitution function.



Algorithms, Continued 

● Converting between FSMs and regular expressions: 
    ● Given a regular expression α, construct an FSM M 
    such that:  
          L(α) = L(M) 

    ● Given an FSM M, construct a regular expression α 
    such that:   
          L(α) = L(M) 

● Algorithms that implement operations on languages defined by regular 
expressions: any operation that can be performed on languages 
defined by FSMs can be implemented by converting all regular 
expressions to equivalent FSMs and then executing the appropriate 
FSM algorithm. 



Algorithms: Decision Procedures 

● Decision procedures that answer questions about languages  
   defined by FSMs: 

    ● Given an FSM M and a string s, decide whether s is 
   accepted by M. 
    ● Given an FSM M, decide whether L(M) is empty. 
    ● Given an FSM M, decide whether L(M) is finite. 
    ● Given two FSMs, M1 and M2, decide whether  
   L(M1) = L(M2).   
    ● Given an FSM M, is M minimal? 

● Decision procedures that answer questions about languages  
   defined by regular expressions: Again, convert the regular  
   expressions to FSMs and apply the FSM algorithms.



A Special Case of Pattern Matching 

Suppose that we want to match a pattern that is composed 
of a set of keywords.  Then we can write a regular 
expression of the form: 

 (Σ* (k1 ∪ k2 ∪ … ∪ kn) Σ*)+ 

For example, suppose we want to match:  

   Σ*     finite state machine   ∪  
  FSM ∪ finite state automatonΣ* 

We can use regextofsm to build an FSM.  But … 
We can instead use buildkeywordFSM. 



{cat, bat, cab}
The single keyword cat:



{cat, bat, cab}
Adding bat:



{cat, bat, cab}
Adding cab:



A Biology Example – BLAST 

Given a protein or DNA sequence, find others that are likely 
to be evolutionarily close to it. 

ESGHDTTTYYNKNRYPAGWNNHHDQMFFWV 

Build a DFSM that can examine thousands of other 
sequences and find those that match any of the selected 
patterns.



Regular Expressions in Perl 
Syntax Name Description

abc Concatenation Matches a, then b, then c, where a, b, and c are any regexs

a | b | c Union (Or) Matches a or b or c, where a, b, and c are any regexs

a* Kleene star Matches 0 or more a’s, where a is any regex

a+ At least one Matches 1 or more a’s, where a is any regex

a? Matches 0 or 1 a’s, where a is any regex

a{n, m} Replication Matches at least n but no more than m a’s, where a is any regex

a*? Parsimonious Turns off greedy matching so the shortest match is selected

a+?           ʺ           ʺ

. Wild card Matches any character except newline

^ Left anchor Anchors the match to the beginning of a line or string

$ Right anchor Anchors the match to the end of a line or string 

[a-z] Assuming a collating sequence, matches any single character in range 

[^a-z] Assuming a collating sequence, matches any single character not in range 

\d Digit Matches any single digit, i.e., string in [0-9]

\D Nondigit Matches any single nondigit character, i.e., [^0-9]

\w Alphanumeric Matches any single “word” character, i.e., [a-zA-Z0-9]

\W Nonalphanumeric Matches any character in [^a-zA-Z0-9]

\s White space Matches any character in [space, tab, newline, etc.] 



Syntax Name Description

\S Nonwhite space Matches any character not matched by \s

\n Newline Matches newline

\r Return Matches return

\t Tab Matches tab

\f Formfeed Matches formfeed

\b Backspace Matches backspace inside []

\b Word boundary Matches a word boundary outside []

\B Nonword boundary Matches a non-word boundary

\0 Null Matches a null character

\nnn Octal Matches an ASCII character with octal value nnn

\xnn Hexadecimal Matches an ASCII character with hexadecimal value nn

\cX Control Matches an ASCII control character

\char Quote Matches char; used to quote symbols such as . and \

(a) Store Matches a, where a is any regex, and stores the matched string in the next variable

\1 Variable Matches whatever the first parenthesized expression matched

\2 Matches whatever the second parenthesized expression matched

… For all remaining variables

Regular Expressions in Perl 



Using Regular Expressions  
in the Real World 

Matching numbers: 
 -? ([0-9]+(\.[0-9]*)? | \.[0-9]+) 

Matching ip addresses: 
([0-9]{1,3} (\ . [0-9] {1,3}){3}) 

Finding doubled words: 
  ([A-Za-z]+) \s+ \1  

From Friedl, J., Mastering Regular Expressions, O’Reilly,1997.



More Regular Expressions 

Identifying spam: 

 \badv\(?ert\)?\b  

Trawl for email addresses: 

\b[A-Za-z0-9_%-]+@[A-Za-z0-9_%-]+ (\.[A-Za-
z]+){1,4}\b 



Using Substitution 

Building a chatbot: 

On input: 

 <phrase1> is <phrase2>  

the chatbot will reply:  

 Why is <phrase1> <phrase2>?   



Chatbot Example 

<user> The food there is awful 
<chatbot> Why is the food there awful? 

Assume that the input text is stored in the variable $text:  

$text =~  
  s/^([A-Za-z]+)\sis\s([A-Za-z]+)\.?$/ 
    Why is \1 \2?/ 
; 



Assignment 1
 1. Give state diagrams of DFAs recognizing the following languages. In all parts, the 

alphabet is {0,1}.  
a. {w|w begins with a 1 and ends with a 0}  
b. {w| w contains at least three 1s}  
c. {w| w contains the substring 0101 (i.e., w = x0101y for some x and y)}  
d. {w| w has length at least 3 and its third symbol is a 0}  

2. Give state diagrams of NFAs with the specified number of states recognizing each  
of the following languages. In all parts, the alphabet is {0,1}.  
a. The language of Exercise 1.6c with five states: 

• {w| w contains the substring 0101 (i.e., w = x0101y for some x and y)}  
b. The language of Exercise 1.6l with six states: 

• {w|w contains an even number of 0s, or contains exactly two 1s}   
c. The language {0} with two states  
d. The language 0∗1∗0+ with three states 



Assignment 1 – Cont’d
3. Use the construction given in Theorem 1.39 to convert the following two nondeterministic 

finite automata to equivalent deterministic finite automata 

4. Use the procedure described in Lemma 1.55 to convert the following regular ex- 
pressions to nondeterministic finite automata.  

a. (0 ∪ 1)∗000(0 ∪ 1)∗  
b. (((00)∗ (11)) ∪ 01)∗  
c. ∅∗ 


