CS311:
Computational Theory

Lecture 5: Reqular Languages Applications

Dr. Manal Helal, Spring 2014. http://moodle.manalhelal.com

1. Use Regular Languages in problem solving

Decision Procedures

A decision procedure is an algorithm whose result is a
Boolean value. It must:

|
- Halt
. Be correct |

Important decision procedures exist for regular languages:

. Given an FSM M and a string s, does M accept s?
. Given a regular expression a and a string w, does «
generate w?

‘@Fﬂ O T P R (T P P UL P RS (U I P g e o

%

N

Membership

Membership

decideFSM(M: FSM, w: string) =

If ndfsmsimulate(M, w) accepts then return True
else return False.

decideregex(a.: regular expression, w: string) = ;
From o, use regextofsm to construct an FSM M @

such that L(c) = L(M).
Return decideFSM(M, w).

E

Eas

Emptiness and Finiteness

. Given an FSM M, is L(M) empty? :
. Given an FSM M, is L(M) = X,,*7

. Given an FSM M, is L(M) finite?
. Given an FSM M, is L(M) infinite?

. Given two FSMs M, and M,, are they equivalent?

Emptiness

Given an FSM M, is L(M) empty?

. - - . - N - - T - -
/F - ’fe-kw.—a«' v/-—:{ro--/ .r>!@JPﬁ}K"J~/N>le'r>I”J r/bl/'tq—J v/nr‘/.‘-‘vtw/w

» N N -

Emptiness

Given an FSM M, is L(M) empty?

1. Mark all states that are reachable via some path from the
start state of M.

2. If at least one marked state is an accepting state, return False.
Else return True.

- e NI /D T NS N ST MRNET M SSSY NE M LGN N NCL N, S ridNid oo™ f N o Nt o N e — 0 - Pl o o ;"
O O TP O R S R O TS U O R O S LR TR G it

YES TCRER TCAEY OFES CYES TCYES TORRS TOWES. TORES. XS TERES. [OARS TORES CYES GFXES TOFES ()

N

NSEAUEASA Ca
AN

Emptiness

i} ’\'J (8 LY

A

s iu ¢ \
2 ‘ e

,\
i A& !;3 i

Given an FSM M, is L(M) empty?

% AN

e \‘ "l_v,‘i NG TN R
N

[Mf [

A

2 Nebdede \ehie

DY
L B

1. Let M’ = ndfsmtodfsm(M).
2. For each string w in £* such that |w| < |K,," | do:
Run decideFSM(M’, w).
3. If M’ accepts at least one such string, return False. Else
return True.

RN
ALhE

\,;“l\ N
7 >)
ARG

N

N
5

AN | S L
PN

\!A, -\‘ 9
Sl prg

N A

WL AN
!ﬂ/‘)? NG L
N

Py
e g

-
-
e

? P ——— N D NS N TS AN M S5 N MG T YT M U T M NG NS N U T D g i 0 e e g e e . g ARSI p

Totality

1. Construct M’ to accept =L(M).
2. Return emptyFSM(M").

; o - y - . A g 2T - - - - - " = ;
e ’/c-kwf—a« v/"'\,rlq--/ ./""'/'!@'JU-FQI‘K"JW/N:!I”N/". f'”-/ .../.q/' A—J v/nrt/.tﬂtw/wf';‘lﬂﬂ/ ’f':,”"'[v/-r:, et ‘P/_—v/:e-v.' ~[~—/

Finiteness

Given an FSM M, is L(M) finite?

o ” p— — — danits S
i e e e

Finiteness

e AT e ALY E e X — ot

Given an FSM M, is L(M) finite?

The mere presence of a loop does not guarantee that L(M) is
Infinite. The loop might be:

« labeled only with &,

« unreachable from the start state, or
* not on a path to an accepting state.

R N 0 O " 0 NP "0 P NN T D (o e e~ e ey o~ e [y [

Finiteness

Given an FSM M, is L(M) finite?

1. M’ = ndfsmtodfsm(M).

2. M" = minDFSM(M").

. Mark all states in M"" that are on a path to an accepting
state.

4. Considering only marked states, determine whether there
are any cycles in M".

5. If there are cycles, return True. Else return False.

w

I, s — 2 = — S 3

O —

1 U YO P U "V 0 N " P R T P R e~ e e e~

TN _BYRS TORES. TR YRS YT TCrES. OYES OV, RS TGRS

CYES. TORES. TORES. VRS IOV TOFES.

Finiteness

PN

— Given an FSM M, is L(M) finite?

\ ‘)3‘:" \!ii;’ k‘!ii,’ k‘ii‘;’ : ®

1. M’ = ndfsmtodfsm(M).

2. Foreach string w in * such that |K,,' | = w < 2:|K,' | - 1 do:
& Run decideFSM(M’, w).

- 3. If M’ accepts at least one such string, return False.

Else return True.

e
,\ !/ 4;»’

W B ’1 3
DG4

PR ELL

P54

N
5

ARSI

S
v’-r -,
o

VRS OIRES TAES RS CUVES CHES PES CPES TACS CAES CAES OARS RS YRS GAES TOFRES. 7

N

Equivalence

Z . Given two FSMs M, and M,, are they equivalent? In
other words, is L(M,) = L(M,)? We can describe two
> different algorithms for answering this question.

” ‘-5&'0-
!_‘-"‘E;::"'

N S
} 2 |
LN !\ Ak ' L

AN L e
PN

AL

N PN T A

- X ; " PN SRS, 2 T G NI N AN e SN SN, N\ AN N nea S e i T . N 7 :
N § R P i ot ./ —":‘II”J .r-r}t':uan N J‘-fn l-‘v-/\—fl,t-—-d’\brnll‘@f\—fc /N N ;»,-« 4 J»fo (sl vr‘,"d v"ﬁf::-n\-v ”
. AR NG r sy S NG NS . i N » § % N f N

, ERTNETs T

Equivalence

. Given two FSMs M, and M,, are they equivalent? In
other words, is L(M,) = L(M,)?

P P g g e

PRSP P T

equalFSMs,(M,: FSM, M,: FSM) =
1. M," = buildFSMcanonicalform(M,).
2. M, = buildFSMcanonicalform(M,).
3. If M, and M, are equal, return True, else return False.

<QMm&vmmmvmmmwmmww

%

!

-

s

Equivalence

. Given two FSMs M, and M,, are they equivalent? In
other words, is L(M,) = L(M,)?

equalFSMs,(M,: FSM, M,: FSM) =

1. Construct M, to accept L(M,) - L(M,).
2. Construct My to accept L(M,) - L(M,). §
3. Construct M to accept L(M,) U L(Mg).
4. Return emptyFSM(M,).

E T ET

Minimality

e Given DFSM M, is M minimal?

o ” p— — — danits S
i e e e

Minimality

e Given DFSM M, is M minimal?

1. M" = minDFSM(M).
2. If |[Ky| = |[Ky | return True; else return False.

Answering Specific Questions

o ” p— — — danits S
i e e e

Answering Specific Questions

1. From a, construct an FSM M, such that L(a.,)
2. From a,, construct an FSM M, such that L(a.,)
3. Construct M’ such that L(M") = L(M,) N L(M,).
4. Construct M_ such that L(M,) = {e}.

5. Construct M"” such that L(M") = L(M") - L(M,).

6. If L(M") is empty return False; else return True.

L(M,).
L(M,).

Answering Specific Questions

Given two regular expressions o, and a.,, are there at least
3 strings that are generated by both of them?

Summary of Algorithms

. Operate on FSMs without altering the language that is
accepted:

e Ndfsmtodfs
e MinDFSM

Summary of Algorithms

® Compute functions of languages defined as FSMs:
e Given FSMs M, and M,, construct a FSM M, such that
L(Ms) = L(M,) U L(M,).
e Given FSMs M, and M,, construct a new FSM M, such that
L(M3) = L(M,) L(M,).
e Given FSM M, construct an FSM M* such that
L(M*) = (L(M))".
e Given a DFSM M, construct an FSM M* such that
L(M*) = =L(M). :
e Given two FSMs M, and M,, construct an FSM M, such that
L(M3) = L(M;) N L(M,).
e Given two FSMs M, and M,, construct an FSM M, such that
L(M3) = L(M,) - L(M,).
e Given an FSM M, construct an FSM M* such that
L(M*) = (L(M))R, (i.e., the reverse of L(M)).
e Given an FSM M, construct an FSM M* that accepts

letsub(L(M)), where letsub is a letter substitution function. A
T N N P P R S e A s w@i@-@;@

PR U

e

Vo S T PO O R Y s P

Algorithms, Continued

e Converting between FSMs and regular expressions:
e Given a regular expression a, construct an FSM M
such that: |
L(a) = L(M) |

e Given an FSM M, construct a regular expression a. 5

such that: :
L(a) = L(M) :

e Algorithms that implement operations on languages defined by regular
expressions: any operation that can be performed on languages
defined by FSMs can be implemented by converting all regular
expressions to equivalent FSMs and then executing the appropriate
FSM algorithm.

VO PR PRSU P P PO U

VO T P O TG

Algorithms: Decision Procedures

e Decision procedures that answer questions about languages
defined by FSMs:

e Given an FSM M and a string s, decide whether s is
accepted by M.

e Given an FSM M, decide whether L(M) is empty.

e Given an FSM M, decide whether L(M) is finite.

e Given two FSMs, M, and M,, decide whether |
L(M,) = L(M,).

e Given an FSM M, is M minimal?

e Decision procedures that answer questions about languages _
defined by regular expressions: Again, convert the regular]
expressions to FSMs and apply the FSM algorithms.

SIS

A Special Case of Pattern Matching

Suppose that we want to match a pattern that is composed
of a set of keywords. Then we can write a regular
expression of the form:

e s et . s -

Sk, Okl 2k =

P P g g e

For example, suppose we want to match:

PRSP P T

D R oA = R P i e At e AT
B SMAofacnkrcfes i ol anonntise OImese

ey B e il R e

We can use regextofsm to build an FSM. But ...
We can instead use buildkeywordFSM.

4 '@mm&\’!mlmwm\vr

A.&w

g

s

{cat, bat, cab}

{cat, bat, cab} /

{cat, bat, cab}

L
b
t

a
€
a
b

; N T O 0 T e ——— m@ﬂ@

A Biology Example — BLAST

Given a protein or DNA sequence, find others that are likely
to be evolutionarily close to it.

ESGHDTTTYYNKNRYPAGWNNHHDQMEEWYV

Build a DFSM that can examine thousands of other

sequences and find those that match any of the selected
patterns.

ey B e il R e

LN o T P R R

Regular Expressions in Perl

Syntax Name Description
abc Concatenation Matches a, then b, then ¢, where a, b, and ¢ are any regexs
a/[ib-(c Union (Or) Matches a or b or ¢, where a, b, and ¢ are any regexs
a8 Kleene star Matches 0 or more a’s, where a is any regex
a+ At least one Matches 1 or more a’s, where a is any regex
a? Matches 0 or 1 a’s, where a is any regex
a{n, m} Replication Matches at least n but no more than m a’s, where a is any regex
Aty Parsimonious Turns off greedy matching so the shortest match is selected
Ak i s
Wild card Matches any character except newline
£ Left anchor Anchors the match to the beginning of a line or string
$ Right anchor Anchors the match to the end of a line or string
[a-z] Assuming a collating sequence, matches any single character in range
[fa-z] Assuming a collating sequence, matches any single character not in range
\d Digit Matches any single digit, 1.e., string in [0-9]
\D Nondigit Matches any single nondigit character, 1.e., [*0-9]
\w Alphanumeric Matches any single “word” character, i.e., [a-zA-Z0-9]
\W Nonalphanumeric Matches any character in [*a-zA-70-9]
\s White space Matches any character in [space, tab, newline, etc.]

N AN RN IR

AT N

P D S IR A,

A B Ty BB I P T T

~
i

—
NS A T g

Regular Expressions in Perl

Syntax Name Description

S Nonwhite space Matches any character not matched by \s

\n Newline Matches newline

\r Return Matches return

AN Tab Matches tab

i Formfeed Matches formfeed

\b Backspace Matches backspace inside []

\b Word boundary Matches a word boundary outside []

\B Nonword boundary Matches a non-word boundary

\0 Null Matches a null character

\nnn Octal Matches an ASCII character with octal value nnn

\xnn Hexadecimal Matches an ASCII character with hexadecimal value nn

\cX Control Matches an ASCII control character

\char Quote Matches char; used to quote symbols such as . and \

(a) Store Matches a, where a is any regex, and stores the matched string in the next variable

\1 Variable Matches whatever the first parenthesized expression matched

2 Matches whatever the second parenthesized expression matched
For all remaining variables

N FTN 4

AT N

A O RO Es.
B o o e g i A RS

P D S IR,

W Using Regular Expressions

- in the Real World

Matching numbers:
-? ([0-9]+(\.[0-9]%)? | \.[0-9]+)

Matching ip addresses:
([0-9{1,3} (\ . [0-9] {1,3}{3})

Finding doubled words:
([A-Za-z]+) \s+ \1

From Fried|, J., Mastering Regular Expressions, O’'Reilly,1997.

li,
A
$ 1-“‘«‘7‘"“”"“ W ol sl i N g s N D N Gl o ol i N 78 § §

More Regular Expressions

Identifying spam:
Nhadvi e R a2l

Trawl for email addresses:

\b[A-Za-20-9 %-1+@[A-Za-z0-9 %-1+ (\.[A-Za-
zalier Bilel 2 o) o

Using Substitution

Building a chatbot:
On input:

<phrase1> is <phrase2>
the chatbot will reply:

Why 1is <phrase1> <phrase2>~

Chatbot Example

<user> The food there 1s awful
<chatbot> Why is the food there awful?

Assume that the input text is stored in the variable Stext:

S eciini—
SLAt R e i e e e e SR I Sl R A S
Whiywamswsikos ez

Assignment 1

1. Give state diagrams of DFAs recognizing the following languages. In all parts, the
alphabet is {0,1}.
{w|w begins with a 1 and ends with a 0}

a
b. {w| w contains at least three 1s}

c. {w| w contains the substring 0101 (i.e., w = x0101y for some x and y)}
d.

{w| w has length at least 3 and its third symbol is a 0}

2. Give state diagrams of NFAs with the specified number of states recognizing each
of the following languages. In all parts, the alphabet is {0,1}.
a. The language of Exercise 1.6c¢ with five states:

« {w| w contains the substring 0101 (i.e., w = x0101y for some x and y)}
b. The language of Exercise 1.6l with six states:

« {w|w contains an even number of 0s, or contains exactly two 1s}
c. The language {0} with two states

d. The language 0" 1°0* with three states

- R N / T NS NS NG M ST N M S A T AT T M NG M N N S M M e P —— . < WA R ;’.
ol PEN TOVES TS 'f'}‘;.:'r’ '/'-}f:ﬁ*.’ 'rf'}‘-.:_"” 7’}’-;’«“’ 'f}f:*/‘ 'f"/j"’ 'f:ef.j_"" ”/"zf:"f." PR P DRSS TCERS G o

CUES RS CARY OFES. CFES CPAES OARS GRES. AR, CYES TOAES. CAKS. TOrRES TOYES CFRES TOXES. 1]

Assignment 1 — Cont'd

M

&% 3. Use the construction given in Theorem 1.39 to convert the following two nondeterministic
P finite automata to equivalent deterministic finite automata X4

oo a ~
N, . - £/
'/ V @ o @
l‘ .|
= b |
T a b N\
:_»/ ’ a a » b N
= A

= 4. Use the procedure des@ibed in Lemma 1.55 to converfbthe following regular ex-
pressions to nondeterministic finite automata.

a. (0u 1)-000(0 u 1)+

= b. (((00)« (11)) u 01)+«

C. D%

Aehdeds Wby

7

N

" _:_
& l
LN DC L2 AN

AN | S L
RN

AL

N PN T A

- X ; " PN SRS, 2 T G NI N AN e SN SN, N\ AN N nea S e i T . N 7 :
N § R P i ot ./ —":‘II”J .r-r}t':uan N J‘-fn l-‘v-/\—fl,t-—-d’\brnll‘@f\—fc /N N ;»,-« 4 J»fo (sl vr‘,"d v"ﬁf::-n\-v ”
. AR NG r sy S NG NS . i N » § % N f N

