

CS311: Computational Theory

Lecture 6: CONTEXT-FREE GRAMMARS – Ch 2

Lecture Learning Objectives

1. Understand Context-Free Grammars and their applications.

Not all languages are regular

- So what happens to the languages which are not regular?
- Can we still come up with a language recognizer?
 - o i.e., something that will accept (or reject) strings that belong (or do not belong) to the language?

Context-Free Languages

- A language class larger than the class of regular languages
- Supports natural, recursive notation called "context-free grammar"
- Applications:
 - o Parse trees, compilers
 - o XML

An Example

- A palindrome is a word that reads identical from both ends
 - o E.g., madam, redivider, malayalam, 010010010
- Let L = { w | w is a binary palindrome} '
- Is L regular?
 - o No.
 - o Proof:
 - ➤ Let w=0N10N (assuming N to be the p/l constant)
 - By Pumping lemma, w can be rewritten as xyz, such that xy^kz is also L (for any k≥0)
 - > But |xy|≤N and y≠ε
 - > ==> y=0+
 - $> ==> xy^kz$ will NOT be in L for k=0
 - > ==> Contradiction

But the language of palindromes...

is a CFL, because it supports recursive substitution (in the form of a CFG)

This is because we can construct a <u>"grammar"</u>
 like this:

$$2. A ==> 0$$

5.
$$A ==> 1A1$$

Terminal

Same as: A => 0A0 | 1A1 | 0 | 1 | ε

Variable or non-terminal

Productions

How does this grammar work?

How does the CFG for palindromes work?

An input string belongs to the language (i.e., accepted) iff it can be generated by the CFG

- <u>Example:</u> w=01110
- G can generate w as follows:

- 1. A => 0A0
- 2. => 01A10
- 3. => 01**1**10

Generating a string from a grammar:

- 1.Pick and choose a sequence of productions that would allow us to generate the string.
- 2.At every step, substitute one variable with one of its productions.

Context-Free Grammar: Definition

- A context-free grammar G=(V,∑,R,S), where:
 - V: set of variables or non-terminals
 - T: set of terminals (= alphabet U {ε})
 - P: set of productions, each of which is of the form $V ==> \alpha_1 \mid \alpha_2 \mid ...$
 - > Where each α; is an arbitrary string of variables and terminals
 - o S ==> start variable

CFG for the language of binary palindromes:

$$G=({A},{0,1},P,A)$$

P: A ==> 0 A 0 | 1 A 1 | 0 | 1 | ε

More examples

- Parenthesis matching in code
- Syntax checking
- In scenarios where there is a general need for:
 - Matching a symbol with another symbol, or
 - Matching a count of one symbol with that of another symbol, or
 - Recursively substituting one symbol with a string of other symbols

- Language of balanced paranthesise.g., ()(((())))((()))....
- · CFG?

How would you "interpret" the string "(((()))()())" using this grammar?

- A grammar for $L = \{0^m 1^n \mid m \ge n\}$
- CFG?

How would you interpret the string "00000111" using this grammar?

A program containing if-then(-else) statements if Condition then Statement else Statement (Or) if Condition then Statement CFG?

```
\langle \text{SENTENCE} \rangle \rightarrow \langle \text{NOUN-PHRASE} \rangle \langle \text{VERB-PHRASE} \rangle
\langle \text{NOUN-PHRASE} \rangle \rightarrow \langle \text{CMPLX-NOUN} \rangle | \langle \text{CMPLX-NOUN} \rangle \langle \text{PREP-PHRASE} \rangle
\langle \text{VERB-PHRASE} \rangle \rightarrow \langle \text{CMPLX-VERB} \rangle | \langle \text{CMPLX-VERB} \rangle \langle \text{PREP-PHRASE} \rangle
\langle \text{PREP-PHRASE} \rangle \rightarrow \langle \text{PREP} \rangle \langle \text{CMPLX-NOUN} \rangle
\langle \text{CMPLX-NOUN} \rangle \rightarrow \langle \text{ARTICLE} \rangle \langle \text{NOUN} \rangle
\langle \text{CMPLX-VERB} \rangle \rightarrow \langle \text{VERB} \rangle | \langle \text{VERB} \rangle \langle \text{NOUN-PHRASE} \rangle
\langle \text{ARTICLE} \rangle \rightarrow \text{a} | \text{the}
\langle \text{NOUN} \rangle \rightarrow \text{boy} | \text{girl} | \text{flower}
\langle \text{VERB} \rangle \rightarrow \text{touches} | \text{likes} | \text{sees}
\langle \text{PREP} \rangle \rightarrow \text{with}
```

Example #5 Derviation

a boy sees

```
(SENTENCE) ⇒ (NOUN-PHRASE)(VERB-PHRASE)
```

⇒ (C MPLX-N OUN)(VERB-PHRASE)

⇒ ⟨ARTICLE⟩⟨NOUN⟩⟨VERB-PHRASE⟩

⇒ a (NOUN)(VERB-PHRASE)

⇒ a by (VERB-PHRASE)

⇒ a by (CMPLX-VERB)

⇒ a by (VERB)

⇒ a by sees

More examples

- $L_1 = \{0^n \mid n \ge 0\}$
- $L_2 = \{0^n \mid n \ge 1\}$
- $L_3 = \{0^{i}1^{j}2^k \mid i=j \text{ or } j=k, \text{ where } i,j,k \geq 0\}$
- $L_4 = \{0^i 1^j 2^k \mid i=j \text{ or } i=k, \text{ where } i,j,k \ge 1\}$

Applications of CFLs & CFGs

- Compilers use parsers for syntactic checking
- Parsers can be expressed as CFGs
 - 1. Balancing paranthesis:
 - > B ==> BB | (B) | Statement
 - > Statement ==> ...
 - 2. If-then-else:
 - > S ==> SS | if Condition then Statement else Statement | if Condition then Statement | Statement | Statement
 - > Condition ==> ...
 - > Statement ==> ...
 - C paranthesis matching { ... }
 - Pascal begin-end matching
 - YACC (Yet Another Compiler-Compiler)

More applications

- Markup languages
 - Nested Tag Matching
 - > HTML
 - < <html> ...> </<p>html>
 - > XML

Tag-Markup Languages

```
Roll ==> <ROLL> Class Students </ROLL>
Class ==> <CLASS> Text </CLASS>
Text ==> Char Text | Char
Char ==> a | b | ... | z | A | B | ... | Z
Students ==> Student Students | ɛ
Student ==> <STUD> Text </STUD>
```

Here, the left hand side of each production denotes one non-terminals (e.g., "Roll", "Class", etc.)

Those symbols on the right hand side for which no productions (i.e., substitutions) are defined are terminals (e.g., 'a', 'b', '|', '<', '>', "ROLL", etc.)

Structure of a production

head

derivation

body

$$\alpha_1 | \alpha_2 | \dots | \alpha_k$$

The above is same as:

$$1.A ==> \alpha_1$$

2.
$$A ==> \alpha_2$$

3.
$$A ==> \alpha_3$$

$$K. A ==> \alpha_k$$

CFG conventions

- Terminal symbols <== a, b, c...
- Non-terminal symbols <== A,B,C, ...
- Terminal or non-terminal symbols <== X,Y,Z
- Terminal strings <== w, x, y, z
- Arbitrary strings of terminals and non-terminals $<== \alpha, \beta, \gamma, ...$

Syntactic Expressions in Programming Languages

result = a*b + score + 10 * distance + c

Regular languages have only terminals

Reg expression = [a-z][a-z0-1]*

 If we allow only letters a & b, and 0 & 1 for constants (for simplification)

> Regular expression = (a+b)(a+b+0+1)*

String membership

How to say if a string belong to the language defined by a CFG?

- 1. Derivation
 - Head to body
- 2. Recursive inference
 - Body to head

Example:

- o w = 01110
- o Is w a palindrome?

Both are equivalent forms

A => 0A0 => 01A10 => 01110

Simple Expressions...

- We can write a CFG for accepting simple expressions
- $G = (V, \Sigma, R, S)$
 - $\circ V = \{E, \overline{F}\}$
 - $\circ \Sigma = \{0,1,a,b,+,*,(,)\}$
 - \circ $S = \{E\}$
 - - > E ==> E+E | E*E | (E) | F > F ==> aF | bF | 0F | 1F | a | b | 0 | 1

Generalization of derivation

- Derivation is head ==> body
- A==>X (A derives X in a single step)
- $A ==>^*_G X$ (A derives X in a multiple steps)

Transitivity:

$$IFA ==>*_GB$$
, and $B ==>*_GC$, $THEN A ==>*_GC$

Context-Free Language

 The language of a CFG, G=(V,∑,R,S), denoted by L(G), is the set of terminal strings that have a derivation from the start variable S.

o
$$L(G) = \{ w \text{ in } T^* \mid S ==>^*_G w \}$$

Left-most & Right-most Derivation

Styles

Derive the string a*(ab+10) from G:

Left-most derivation:

Always substitute leftmost variable

$$E = = >_G a*(ab+10)$$

Right-most derivation:

Always substitute rightmost variable

Leftmost vs. Rightmost derivations

Q1) For every leftmost derivation, there is a rightmost derivation, and vice versa. True or False?

True - will use parse trees to prove this Q2) Does every word generated by a CFG nave a lentmost and a rightmost derivation?

Yes – easy to prove (reverse direction)
Q3) Could there be words which have more than one
leftmost (or rightmost) derivation?

Yes – depending on the grammar

How to prove that your CFGs are correct?

(using induction)

CFG & CFL

- <u>Theorem:</u> A string w in $(0+1)^*$ is in $L(G_{pal})$, if and only if, w is a palindrome.
- Proof:
 - Use induction
 - > on string length for the IF part
 - > On length of derivation for the ONLY IF part

Parse trees

Parse Trees

- Each CFG can be represented using a parse tree:
 - Each internal node is labeled by a variable in V
 - Each <u>leaf</u> is terminal symbol
 - For a production, $A == \hat{X}_1 X_2 ... X_k$, then any internal node labeled A has k children which are labeled from $X_1, X_2, ... X_k$ from left to right

Parse tree for production and all other subsequent productions:

$$A ==> X_1..X_i..X_k$$

Examples

Parse tree for a + 1

<u>G:</u> E => E+E | E*E | (E) | F F => aF | bF | 0F | 1F | 0 | 1 | a | b Recursive inference

<u>G:</u> A => 0A0 | 1A1 | 0 | 1 | ε Derivation

Parse Trees, Derivations, and Recursive Inferences

Interchangeability of different CFG representations

- Parse tree ==> left-most derivation
 - DFS left to right
- Parse tree ==> right-most derivation
 - o DFS right to left
- ==> left-most derivation == right-most derivation
- Derivation ==> Recursive inference
 - Reverse the order of productions
- Recursive inference ==> Parse trees
 - o bottom-up traversal of parse tree

Ambiguity in CFGs and CFLs

Ambiguity in CFGs

 A CFG is said to be ambiguous if there exists a string which has more than one left-most derivation

Example:

 $S ==> AS \mid \epsilon$

A ==> A1 | 0A1 | 01

LM derivation #1:

S => AS

=> 0A1S

=>0**A1**1S

=> 00111S

=> 00111

LM derivation #2:

S => AS

=> A1S

=> 0A11S

=> 00111S

=> 00111

Input string: 00111

Can be derived in two ways

Why does ambiguity matter?

E ==> E + E | E * E | (E) | a | b | c | 0 | 1

Values are different !!!

string = a * b + c

LM derivation #1:
E => E + E => E * E + E

LM derivation #2

The calculated value depends on which of the two parse trees is actually used.

Connection between CFLs and RLs

Removing Ambiguity in Expression Evaluations

- It MAY be possible to remove ambiguity for some CFLs
 - E.g., in a CFG for expression evaluation by imposing rules & restrictions such as precedence
 - This would imply rewrite of the grammar
- Precedence: (), *, +

Modified unambiguous version:

```
E => E + T | T
T => T * F | F
F => I | (E)
I => a | b | c | 0 | 1
```

Ambiguous version:

E ==> E + E | E * E | (E) | a | b | c | 0 | 1

How will this avoid ambiguity?

Inherently Ambiguous CFLs

- However, for some languages, it may not be possible to remove ambiguity
- A CFL is said to be inherently ambiguous if every CFG that describes it is ambiguous

Example:

- $L = \{a^n b^n c^m d^m \mid n, m \ge 1\} \cup \{a^n b^m c^m d^n \mid n, m \ge 1\}$
- L is inherently ambiguous
- o Why?

Input string: anbncndn

Chomsky Normal Form

- A context-free grammar $G = (V, \sum, R, S)$ is in Chomsky normal form if every rule is of the form
- $A \rightarrow BC \text{ or } A \rightarrow X$
- with variables $A \in V$ and $B, C \in V \setminus \{S\}$, and $x \in \Sigma$ For the start variable S we also allow the rule $S \rightarrow E$
- Advantage: Grammars in this form are far easier to analyse.

Theorem 2.9

- Every context-free language can be described by a grammar in Chomsky normal form.
- Outline of Proof:
 - We rewrite every CFG in Chomsky normal form.
 - We do this by replacing, one-by-one, every rule that is not 'Chomsky'.
 - We have to take care of: Starting Symbol,
 E symbol, all other violating rules.

Example of Chomsky NF

- Initial grammar: S→ aSb | E
- In Chomsky normal form:

$$> S_0 \rightarrow \mathbf{E} | T_a T_b | T_a X$$

$$> X \rightarrow ST_b$$

$$> S \rightarrow T_a T_b | T_a X$$

$$> T_a \rightarrow a$$

$$> T_b \rightarrow b$$

RL CFL

- Every regular language can be expressed by a context-free grammar.
- Proof Idea:
 - o Given a DFA $M = (Q, \sum, \delta, q_0, F)$, we construct a corresponding CF grammar $GM = (V, \sum, R, S)$ with V = Q and $S = q_0$
 - o Rules of GM:
 - $> q_i \rightarrow x \delta(q_i, x)$ for all $q_i \in V$ and all $x \in \Sigma$
 - $> q_i \rightarrow \varepsilon$ for all $q_i \in F$

Example RL ⊆ CFL

The DFA

- leads to the context-free grammar
- $G_M = (Q, \sum, R, q_1)$ with the rules
 - $0 q_1 \rightarrow 0q_1 | 1q_2$
 - $0 q_2 \to 0q_3 |1q_2| =$
 - $\circ q_3 \rightarrow 0q_2 | 1q_2$

Summary

- Context-free grammars
- Context-free languages
- Productions, derivations, recursive inference, parse trees
- Left-most & right-most derivations
- Ambiguous grammars
- Removing ambiguity
- CFL/CFG applications
 - o parsers, markup languages