
CS311:
Computational Theory

Lecture 6: CONTEXT-FREE GRAMMARS – Ch 2

Dr. Manal Helal, Spring 2014. http://moodle.manalhelal.com

Lecture Learning Objectives

1. Understand Context-Free Grammars and their
applications.

Not all languages are regular
• So what happens to the languages which are not

regular?

• Can we still come up with a language recognizer?
o i.e., something that will accept (or reject) strings that

belong (or do not belong) to the language?

3

4

Context-Free Languages

• A language class larger than the class of regular
languages

• Supports natural, recursive notation called “context-free
grammar”

• Applications:
o Parse trees, compilers
o XML

Regular
(FA/RE)

Context- 
free

 (PDA/CFG)

5

An Example
• A palindrome is a word that reads identical from both

ends
o E.g., madam, redivider, malayalam, 010010010

• Let L = { w | w is a binary palindrome}
• Is L regular?
o No.
o Proof:
➢ Let w=0N10N (assuming N to be the p/l constant)

➢ By Pumping lemma, w can be rewritten as xyz, such that xykz is also L (for any
k≥0)

➢ But |xy|≤N and y≠ε
➢ ==> y=0+

➢ ==> xykz will NOT be in L for k=0
➢ ==> Contradiction

6

But the language of palindromes…

 is a CFL, because it supports recursive
substitution (in the form of a CFG)

• This is because we can construct a “grammar”
like this:

1. A ==> ε
2. A ==> 0
3. A ==> 1
4. A ==> 0A0
5. A ==> 1A1

Terminal

Productions
Variable or non-terminal

How does this grammar work?

Same as: 
 A => 0A0 | 1A1 | 0 | 1 | ε

How does the CFG for palindromes
work?

An input string belongs to the language (i.e.,
accepted) iff it can be generated by the CFG

• Example: w=01110
• G can generate w as follows:

1. A => 0A0
2. => 01A10
3. => 01110

7

G: 
 A => 0A0 | 1A1 | 0 | 1 | ε

Generating a string from a grammar:
1.Pick and choose a sequence 
of productions that would  
allow us to generate the 
string.
2.At every step, substitute one variable 
with one of its productions.

8

Context-Free Grammar: Definition

• A context-free grammar G=(V,∑,R,S), where:
o V: set of variables or non-terminals
o T: set of terminals (= alphabet U {ε})
o P: set of productions, each of which is of the form 

 V ==> α1 | α2 | …
➢ Where each αi is an arbitrary string of variables and terminals

o S ==> start variable

CFG for the language of binary palindromes:

G=({A},{0,1},P,A)
P: A ==> 0 A 0 | 1 A 1 | 0 | 1 | ε

9

More examples
• Parenthesis matching in code
• Syntax checking
• In scenarios where there is a general need for:
o Matching a symbol with another symbol, or
o Matching a count of one symbol with that of another

symbol, or
o Recursively substituting one symbol with a string of

other symbols

10

Example #2
• Language of balanced paranthesis
 e.g., ()(((())))((()))….
• CFG?

G: 
 S => (S) | SS | ε

How would you “interpret” the string “(((()))()())” using this grammar?

11

Example #3
• A grammar for L = {0m1n | m≥n}

• CFG?
G: 
 S => 0S1 | A
 A => 0A | ε

How would you interpret the string “00000111”  
 using this grammar?

12

Example #4
A program containing if-then(-else) statements

if Condition then Statement else Statement
(Or)
if Condition then Statement

CFG?

Example #5

Example #5 Derviation

More examples
• L1 = {0n | n≥0 }

• L2 = {0n | n≥1 }

• L3={0i1j2k | i=j or j=k, where i,j,k≥0}

• L4={0i1j2k | i=j or i=k, where i,j,k≥1}

15

16

Applications of CFLs & CFGs

• Compilers use parsers for syntactic checking
• Parsers can be expressed as CFGs

1. Balancing paranthesis:
➢ B ==> BB | (B) | Statement
➢ Statement ==> …

2. If-then-else:
➢ S ==> SS | if Condition then Statement else Statement | if Condition then

Statement | Statement
➢ Condition ==> …
➢ Statement ==> …

– C paranthesis matching { … }
– Pascal begin-end matching
– YACC (Yet Another Compiler-Compiler)

17

More applications
• Markup languages
o Nested Tag Matching
➢ HTML
◇ <html> …<p> … … </p> … </

html>

➢ XML
◇ <PC> … <MODEL> … </MODEL> .. <RAM> … </

RAM> … </PC>

18

Tag-Markup Languages
Roll ==> <ROLL> Class Students </ROLL>
Class ==> <CLASS> Text </CLASS>
Text ==> Char Text | Char
Char ==> a | b | … | z | A | B | .. | Z
Students ==> Student Students | ε
Student ==> <STUD> Text </STUD>

Here, the left hand side of each production denotes one non-terminals
(e.g., “Roll”, “Class”, etc.)

Those symbols on the right hand side for which no productions (i.e.,
substitutions) are defined are terminals (e.g., ‘a’, ‘b’, ‘|’, ‘<‘, ‘>’, “ROLL”,
etc.)

19

Structure of a production

A =======> α1 | α2 | … | αk

head bodyderivation

1. A ==> α1
2. A ==> α2
3. A ==> α3
…
K. A ==> αk

The above is same as:

20

CFG conventions
• Terminal symbols <== a, b, c…

• Non-terminal symbols <== A,B,C, …

• Terminal or non-terminal symbols <== X,Y,Z

• Terminal strings <== w, x, y, z

• Arbitrary strings of terminals and non-terminals
<== α, β, γ, ..

21

Syntactic Expressions in
Programming Languages

 result = a*b + score + 10 * distance + c

Regular languages have only terminals
o Reg expression = [a-z][a-z0-1]*
o If we allow only letters a & b, and 0 & 1 for constants

(for simplification)
➢ Regular expression = (a+b)(a+b+0+1)*

terminals variables Operators are also
terminals

22

String membership
How to say if a string belong to the language

defined by a CFG?
1. Derivation

o Head to body
2. Recursive inference

o Body to head
Example:

o w = 01110
o Is w a palindrome? 

Both are equivalent forms

G: 
 A => 0A0 | 1A1 | 0 | 1 | ε

A => 0A0
 => 01A10
 => 01110

23

Simple Expressions…
• We can write a CFG for accepting simple

expressions
• G = (V,∑,R,S)
o V = {E,F}
o ∑ = {0,1,a,b,+,*,(,)}
o S = {E}
o R:
➢ E ==> E+E | E*E | (E) | F
➢ F ==> aF | bF | 0F | 1F | a | b | 0 | 1

24

Generalization of derivation
■ Derivation is head ==> body

■ A==>X (A derives X in a single step)
■ A ==>*G X (A derives X in a multiple steps)

■ Transitivity:
IFA ==>*GB, and B ==>*GC, THEN A ==>*G C

25

Context-Free Language

• The language of a CFG, G=(V,∑,R,S), denoted by
L(G), is the set of terminal strings that have a
derivation from the start variable S.

o L(G) = { w in T* | S ==>*G w }

26

Left-most & Right-most Derivation
Styles

Derive the string a*(ab+10) from G:

■E
■==> E * E
■==> F * E
■==> a * E
■==> a * (E)
■==> a * (E + E)
■==> a * (F + E)
■==> a * (aF + E)
■==> a * (abF + E)
■==> a * (ab + E)
■==> a * (ab + F)
■==> a * (ab + 1F)
■==> a * (ab + 10F)
■==> a * (ab + 10)

E =*=>G a*(ab+10)

Left-most  
derivation:

■E
■==> E * E
■==> E * (E)
■==> E * (E + E)
■==> E * (E + F)
■==> E * (E + 1F)
■==> E * (E + 10F)
■==> E * (E + 10)
■==> E * (F + 10)
■==> E * (aF + 10)
■==> E * (abF + 0)
■==> E * (ab + 10)
■==> F * (ab + 10)
■==> aF * (ab + 10)
■==> a * (ab + 10)

Right-most  
derivation:

G: 
 E => E+E | E*E | (E) | F
 F => aF | bF | 0F | 1F | ε

Always 
substitute  
leftmost 
variable

Always 
substitute  
rightmost 
variable

27

Leftmost vs. Rightmost derivations

Q1) For every leftmost derivation, there is a rightmost
derivation, and vice versa. True or False?

Q2) Does every word generated by a CFG have a leftmost
and a rightmost derivation?

Q3) Could there be words which have more than one
leftmost (or rightmost) derivation?

True - will use parse trees to prove this

Yes – easy to prove (reverse direction)

Yes – depending on the grammar

How to prove that your
CFGs are correct?

(using induction)

28

29

CFG & CFL
• Theorem: A string w in (0+1)* is in L(Gpal), if and only

if, w is a palindrome.

• Proof:
o Use induction
➢ on string length for the IF part
➢ On length of derivation for the ONLY IF part

Gpal: 
 A => 0A0 | 1A1 | 0 | 1 | ε

Parse trees

30

31

Parse Trees
• Each CFG can be represented using a parse tree:
o Each internal node is labeled by a variable in V
o Each leaf is terminal symbol
o For a production, A==>X1X2…Xk, then any internal node labeled

A has k children which are labeled from X1,X2,…Xk from left to
right

A

X1 Xi Xk… …

Parse tree for production and all other subsequent productions:
 A ==> X1..Xi..Xk

E

E + E

F

a

F

1

Parse tree for a + 1

32

Examples

A

0 A 0

1 1A

ε

Parse tree for 0110R
ec

ur
si

ve
 in

fe
re

nc
e

D
er

iv
at

io
n

G: 
 E => E+E | E*E | (E) | F
 F => aF | bF | 0F | 1F | 0 | 1 | a | b

G: 
 A => 0A0 | 1A1 | 0 | 1 | ε

33

Parse Trees, Derivations, and
Recursive Inferences

A

X1 Xi Xk… …

R
ec

ur
si

ve

in
fe

re
nc

e

D
er

iv
at

io
n

Production:
 A ==> X1..Xi..Xk

Parse treeLeft-most 
derivation

Right-most 
derivation

Derivation
Recursive 
inference

34

Interchangeability of different CFG
representations

• Parse tree ==> left-most derivation
o DFS left to right

• Parse tree ==> right-most derivation
o DFS right to left

• ==> left-most derivation == right-most derivation
• Derivation ==> Recursive inference
o Reverse the order of productions

• Recursive inference ==> Parse trees
o bottom-up traversal of parse tree

Ambiguity in CFGs and
CFLs

35

36

Ambiguity in CFGs

• A CFG is said to be ambiguous if there exists a
string which has more than one left-most derivation

LM derivation #1:
S => AS
 => 0A1S  
 =>0A11S 
 => 00111S  
 => 00111

Example:
S ==> AS | ε
A ==> A1 | 0A1 | 01

Input string: 00111
 Can be derived in two ways

LM derivation #2:
S => AS  
 => A1S  
 => 0A11S 
 => 00111S  
 => 00111

37

Why does ambiguity matter?

string = a * b + c

E ==> E + E | E * E | (E) | a | b | c | 0 | 1

• LM derivation #1:
•E => E + E => E * E + E  
 ==>* a * b + c

• LM derivation #2
•E => E * E => a * E =>  
 a * E + E ==>* a * b + c

E

E + E

E * E

a b

c

 (a*b)+c

E

E * E

E+Ea

b c

a*(b+c)

Values are  
different !!!

The calculated value depends on which  
of the two parse trees is actually used.

Connection between CFLs
and RLs

38

39

Removing Ambiguity in Expression
Evaluations

• It MAY be possible to remove ambiguity for
some CFLs

o E.g.,, in a CFG for expression evaluation by imposing
rules & restrictions such as precedence

o This would imply rewrite of the grammar

• Precedence: (), * , +

How will this avoid ambiguity?

E => E + T | T
T => T * F | F
F => I | (E)
I => a | b | c | 0 | 1

Modified unambiguous version:

Ambiguous version:
E ==> E + E | E * E | (E) | a | b | c | 0 | 1

40

Inherently Ambiguous CFLs
• However, for some languages, it may not be

possible to remove ambiguity

• A CFL is said to be inherently ambiguous if
every CFG that describes it is ambiguous

Example:
o L = { anbncmdm | n,m≥ 1} U {anbmcmdn | n,m≥ 1}
o L is inherently ambiguous
o Why?

Input string: anbncndn

Chomsky Normal Form
• A context-free grammar G = (V,∑,R,S) is in Chomsky

normal form if every rule is of the form
• A → BC or A→x
• with variables A∈V and B,C∈V \{S}, and x∈ ∑ For the

start variable S we also allow the rule S→ℇ
• Advantage: Grammars in this form are far easier to

analyse.

Theorem 2.9
• Every context-free language can be described by a

grammar in Chomsky normal form.
• Outline of Proof:
o We rewrite every CFG in Chomsky normal form.
o We do this by replacing, one-by-one, every rule that

is not ‘Chomsky’.
o We have to take care of: Starting Symbol, 
ℇ symbol, all other violating rules.

Example of Chomsky NF
• Initial grammar: S→ aSb | ℇ
• In Chomsky normal form:

➢ S0 →ℇ|TaTb |TaX
➢ X → STb

➢ S→TaTb |TaX
➢ Ta → a
➢ Tb → b

RL ⊆ CFL
• Every regular language can be expressed by a

context-free grammar.
• Proof Idea:
o Given a DFA M = (Q,∑,δ,q0,F), we construct a

corresponding CF grammar GM = (V, ∑,R,S) with V
= Q and S = q0

o Rules of GM:
➢ qi → x δ (qi,x) for all qi∈V and all x∈∑
➢ qi → ℇ for all qi∈F 

Example RL ⊆ CFL  

• The DFA

• leads to the context-free grammar
• GM = (Q, ∑,R,q1) with the rules
o q1 →0q1 |1q2

o q2 →0q3 |1q2 |ℇ
o q3 →0q2 |1q2

46

Summary
• Context-free grammars
• Context-free languages
• Productions, derivations, recursive inference,

parse trees
• Left-most & right-most derivations
• Ambiguous grammars
• Removing ambiguity
• CFL/CFG applications
o parsers, markup languages

