
CS311:
Computational Theory

Lecture 8: CONTEXT-FREE GRAMMARS – Ch 2
(Cont’d)

Dr. Manal Helal, Spring 2014. http://moodle.manalhelal.com

Lecture Learning Objectives
1. Convert among equivalently powerful notations

for a language, including among PDAs and
CFGs.

Abstract View of Objectives

PDA: Example 4
Context Free Language:
 {aibjck| i, j, k ≥ 0 and i = j or i = k}.

Context Free
Grammar:

S → BC
B → aBbD | ε
D → cD |ε

C → aCc | bE |ε
E → bE |ε

Push Down Automaton:

Chomsky Normal Form
• A context-free grammar is in Chomsky normal form

if every rule is of the form
 A → BC
 A→a
• where a is any terminal and A, B, and C are any

variables—except that B and C may not be the start
variable. In addition, we permit the rule S → ε, where
S is the start variable.

Conversion to Chomsky Normal Form

• First, add a new start variable.
• Then, eliminate all ε-rules of the form A → ε.
• Also eliminate all unit rules of the form A → B.
• In both cases, patch up the grammar to be sure that it

still generates the same language.
• Finally, convert the remaining rules into the proper

form.

THEOREM
• A language is context free if and only if some

pushdown automaton recognizes it.

8

Converting CFG to PDA

Main idea: The PDA simulates the leftmost derivation on a given w,
and upon consuming it fully it either arrives at acceptance (by
empty stack) or non-acceptance.

This is same as: “implementing a CFG using a PDA”

PDA 
(acceptance by empty stack)

CFG

w

accept

reject

implements

IN
P

U
T

O
U

TP
U

T

Convert CFG to PDA
• Design the PDA to determine whether some series of

substitutions using the rules of CFG can lead from the
start variable to the input string w.

• It is difficult to non-deterministically choose which
substitution to use to substitute for a variable:

o Begin by writing the start variable on the stack.
o Then make a series of intermediate strings.
o Eventually the PDA may arrive at a string that contains only

terminal symbols matching the input w and accept,
meaning that it has used the grammar to derive a string.

Convert CFG to PDA – Cont’d
• Use the stack of the PDA to simulate the derivation of

a string in the grammar.
o Push S (start variable of G) on the stack
o From this point on, there are two moves the PDA

can make:
➢ If a variable A is on the top of the stack, pop it and push

the right-hand side of a production A → β from G.
➢ If a terminal, a is on the top of the stack, pop it and match

it with whatever symbol is being read from the tape.

Convert CFG to PDA – Steps
1. Place the marker symbol $ and the start variable on the

stack.
2. Repeat the following steps forever.

a. If the top of stack is a variable symbol A, non-deterministically
select one of the rules for A and substitute A by the string on the
right-hand side of the rule.

b. If the top of stack is a terminal symbol a, read the next symbol
from the input and compare it to a. If they match, repeat. If they do
not match, reject on this branch of the non-determinism.

c. If the top of stack is the symbol $, enter the accept state. Doing so
accepts the input if it has all been read.

1. PDA Construction Informal Steps
• P = (Q, Σ, Γ, δ, qstart, F), q, r ∈ Q, a ∈Σ, S ∈ Γ
• PDA to go from q to r when it reads a and pops S
• It pushes the entire string u=u1···ul on the stack at the same

time, then introduce new states q1, . . . , ql−1
• Set the transition function as follows:

 δ(q, a, s) to contain (q1, ul),
 δ(q1, ε, ε) = {(q2, ul−1)},
 δ(q2, ε, ε) = {(q3, ul−2)},
 …
 δ(ql−1, ε, ε) = {(r, u1)}.

2. PDA Construction Formal Steps

• Generally, Q = {qstart, qloop, qaccept} ∪ E, where E is the set of states we

need for implementing the grammar.
• The transition function is defined as follows.
o Begin by initializing the stack to contain the symbols $ and S: δ(qstart,

ε, ε) = {(qloop, S$)}.
o Then put in transitions for the main loop of step 2.
➢ First, case (a) wherein the top of the stack contains a variable. Let

δ(qloop, ε, A) = {(qloop, w)| where A → w is a rule in R}.
➢ Second, case (b) wherein the top of the stack contains a terminal.

Let δ(qloop, a, a) = {(qloop, ε)}.
➢ Finally, case (c) wherein the empty stack marker $ is on the top of

the stack. Let δ(qloop, ε,$) = {(qaccept, ε)}.

• Given: G= (V,T,P,S)
• Output: PN = ({q}, T, V U T, δ, q, S)
• δ:

o For all A ∈ V , add the following transition(s) in the
PDA:
✓ δ(q, ε ,A) = { (q, α) | “A ==>α” ∈ P}

o For all a ∈ T, add the following  
transition(s) in the PDA:
✓ δ(q,a,a)= { (q, ε) }

Note: Initial stack symbol (S) 
same as the start variable 
in the grammar

a

Before:

…

14

Formal construction of PDA from
CFG

A

Before:

… α

After:

…

a

After:

… pop

a…

15

Acceptance by…
• PDAs that accept by final state:
o For a PDA P, the language accepted by P, denoted by

L(P) by final state, is:
➢ {w | (q0,w,Z0) |---* (q,ε, A) }, s.t., q ∈ F

• PDAs that accept by empty stack:
o For a PDA P, the language accepted by P, denoted by

N(P) by empty stack, is:
➢ {w | (q0,w,Z0) |---* (q, ε, ε) }, for any q ∈ Q.

Checklist:
 - input exhausted?
 - in a final state?

Checklist:
 - input exhausted?
 - is the stack empty?

There are two types of PDAs that one can design:
 those that accept by final state or by empty stack

Q) Does a PDA that accepts by empty stack 
 need any final state specified in the design?

PDA Construction Formal Steps

CFG to PDA Example 1
• Given the Grammar G = (V, Ʃ, S, P)
V = {S,X,F}, Set of Variables
Ʃ = {a,+,*,(,)}, Set of Terminals
Start variable is S
Production Rules P = { S -> S+X | X
 X -> X*F | F
 F -> (S) | a }

• This grammar generates a subset of all legal
arithmetic expressions.

CFG to PDA Example 1 – Cont’d
• PDA = (Q, qstart, A, Ʃ, Γ, Z, δ)

• Set of States Q = {qstart, qloop, qaccept},

• A is the accepting state (qaccept),
• Ʃ is the language alphabet (terminals)
• Γ is the stack variables (V ∪ Ʃ ∪ Z)
• Choose an initial stack symbol Z not in S or V.
qstart , Ɛ, Z → qloop , SZ qloop , Ɛ, Z → qaccept , Z

qloop , Ɛ, S → qloop , S+X qloop , Ɛ, S → qloop , X

qloop , Ɛ, X → qloop , X*F qloop , Ɛ, X → qloop , F

qloop , Ɛ, F → qloop , (S) qloop , Ɛ, F → qloop , a

qloop , a, a → qloop , Ɛ qloop , +, + → qloop , Ɛ

qloop , *, * → qloop , Ɛ qloop , (, (→ qloop , Ɛ

qloop ,),) → qloop , Ɛ

Example 2: L of balanced
parenthesis

19

q0

(,Z0 / (Z0
(,(/ ((
), (/ ε

start q1

ε,Z0/ Z0

ε,Z0/ Z0

PDA that accepts by final state

q0

start

(,Z0 / (Z0
(, (/ ((
), (/ ε

ε,Z0 / ε

An equivalent PDA that  
accepts by empty stack

ε,Z0/ Z0

PF: PN:

How will these two PDAs work on the input: ((()) ()) ()

20

PDAs accepting by final state and empty stack
are equivalent

• PF <= PDA accepting by final state
o PF = (QF,∑, Γ, δF,q0,Z0,F)

• PN <= PDA accepting by empty stack
o PN = (QN,∑, Γ, δN,q0,Z0)

• Theorem:
o (PN==> PF) For every PN, there exists a PF s.t. L(PF)=L(PN)

o (PF==> PN) For every PF, there exists a PN s.t. L(PF)=L(PN)

21

Example 3: CFG to PDA
• G = ({S,A}, {0,1}, P, S)
• P:
o S → AS | ε
o A → 0A1 | A1 | 01

• PDA = ({q}, {0,1}, {0,1,A,S}, δ, q, S)
• δ:
o All Variables:
➢ δ(q, ε , S) = { (q, AS), (q, ε)}
➢ δ(q, ε , A) = { (q,0A1), (q,A1), (q,01) }
o Then All Terminals:
➢ δ(q, 0, 0) = { (q, ε) }
➢ δ(q, 1, 1) = { (q, ε) } How will this new PDA work?

Lets simulate string 0011

q

ε,S / S

1,1 / ε
0,0 / ε
ε,A / 01
ε,A / A1
ε,A / 0A1
ε,S / ε
ε,S / AS

Simulating string 0011 on the new
PDA …

22

PDA (δ):
δ(q, ε , S) → { (q, AS), (q, ε)}
δ(q, ε , A) → { (q,0A1), (q,A1), (q,01) }
δ(q, 0, 0) → { (q, ε) }
δ(q, 1, 1) → { (q, ε) }

S

Stack moves (shows only the successful path):

S
A

S
1
A
0

S
1
A

0

S
1
1
0

S
1
1

0

S

1

1
S

1 ε

Accept by  
 empty stack

q

ε,S / S

1,1 / ε
0,0 / ε
ε,A / 01
ε,A / A1
ε,A / 0A1
ε,S / ε
ε,S / AS

S → AS 
 → 0A1S
 → 0011S
 → 0011

Leftmost deriv.:

S → AS → 0A1S → 0011S → 0011

23

Converting a PDA into a CFG - 1

1. Transform the PDA such that:
o Only one character must be popped from the

stack at a time.
o For every transition that does not inspect the

stack (i.e., the pop character is Ɛ), add one
transition that pops a single character and
pushes it back again, for each letter in the
stack alphabet.

Converting a PDA into a CFG - 2
2. Reverse engineer the productions from transitions

o Add a rule S → <sƐf> for the start state, s, and each final
state, f.

o Add a rule <qƐq> → Ɛ for each state q.
o For every transition that pushes a terminal a (that can be Ɛ

and disappears) into the stack:
δ(q,a,Z) → (p, Y1Y2Y3…Yk):
✓ State is changed from q to p;
✓ Terminal a is consumed;
✓ Stack top symbol Z is popped and replaced with a sequence of k

variables.
o Action: Create a grammar variable called “[qZp]” which

includes the following production:
[qZp] → a[pY1q1] [q1Y2q2] [q2Y3q3]… [qk-1Ykqk]

25

Example 1: Bracket matching
• To avoid confusion, we will use b=“(“ and e=“)”:
• PN: ({q0}, {b,e}, {Z0,Z1}, δ, q0, Z0)

1. δ(q0,b,Z0) → { (q0,Z1Z0) }
2. δ(q0,b,Z1) → { (q0,Z1Z1) }
3. δ(q0,e,Z1) → { (q0, ε) }
4. δ(q0, ε ,Z0) → { (q0, ε) }

0. S → [q0Z0q0]
1. [q0Z0q0] → b [q0Z1q0] [q0Z0q0]
2. [q0Z1q0] → b [q0Z1q0] [q0Z1q0]
• [q0Z1q0] → e
1. [q0Z0q0] → ε

Let A=[q0Z0q0]
Let B=[q0Z1q0]

0. S → A
1. A → b B A
• B → b B B
• B → e
• A → ε

Simplifying,

0. S→ b B S | ε
1. B → b B B | eIf you were to directly write

a CFG:

 S → b S e S | ε

26

1. δ(q,0,Z) → { (q,XZ) }
2. δ(q,0,X) → { (q,XX) }
3. δ(q,1,X) → { (r, ε) }
4. δ(r, 1 ,X) → { (r, ε) }
5. δ(r, ε ,Z) → { (r, ε) }

0. S → [qZq] [qZr]
1. [qZq] → 0 [qXq] [qZq] | 0[qXr][rZq]
2. [qZr] → 0[qXq][qZr] | 0[qXr][rZr]
3. [qXq] → 0 [qXq] [qXq] | 0[qXr][rXq]
4. [qXr] → 1 | 0[qXq][qXr] | 0[qXr][rXr]
5. [rZq] →
6. [rXr] → 1
7. [rZr] → ε
8. [rXq] →

Example 2: {0n1n}
• PDA = (Q,Σ,Γ,δ,q,Z) , Q = {q,r}, Σ = {0,1}, Γ = {Z,X}, δ is:

27

1. δ(q,0,Z) → { (q,XZ) }
2. δ(q,0,X) → { (q,XX) }
3. δ(q,1,X) → { (r, ε) }
4. δ(r, 1 ,X) → { (r, ε) }
5. δ(r, ε ,Z) → { (r, ε) }

0. S → [qZq] [qZr]
1. [qZq] → 0 [qXq] [qZq] | 0[qXr][rZq]
2. [qZr] → 0[qXq][qZr] | 0[qXr][rZr]
3. [qXq] → 0 [qXq] [qXq] | 0[qXr][rXq]
4. [qXr] → 1 | 0[qXq][qXr] | 0[qXr][rXr]
5. [rZq] →
6. [rXr] → 1
7. [rZr] → ε
8. [rXq] →

0. S → [qZq] [qZr]
1. [qZq] → 0 [qXq] [qZq]
2. [qZr] → 0[qXq][qZr] | 0[qXr][rZr]
3. [qXq] → 0 [qXq] [qXq]
4. [qXr] → 1 | 0[qXq][qXr] | 0[qXr][rXr]
5. [rXr] → 1
6. [rZr] → ε

Example 2: {0n1n}
• PDA = (Q,Σ,Γ,δ,q,Z) , Q = {q,r}, Σ = {0,1}, Γ = {Z,X}, δ is:

28

Example 2: {0n1n}
• PDA = (Q,Σ,Γ,δ,q,Z) , Q = {q,r}, Σ = {0,1}, Γ = {Z,X}, δ is:

1. δ(q,0,Z) → { (q,XZ) }
2. δ(q,0,X) → { (q,XX) }
3. δ(q,1,X) → { (r, ε) }
4. δ(r, 1 ,X) → { (r, ε) }
5. δ(r, ε ,Z) → { (r, ε) }

0. S → [qZq] [qZr]
1. [qZq] → 0 [qXq] [qZq] | 0[qXr][rZq]
2. [qZr] → 0[qXq][qZr] | 0[qXr][rZr]
3. [qXq] → 0 [qXq] [qXq] | 0[qXr][rXq]
4. [qXr] → 1 | 0[qXq][qXr] | 0[qXr][rXr]
5. [rZq] →
6. [rXr] → 1
7. [rZr] → ε
8. [rXq] →

0. S → [qZq] [qZr]
1. [qZq] → 0 [qXq] [qZq]
2. [qZr] → 0[qXq][qZr] | 0[qXr][rZr]
3. [qXq] → 0 [qXq] [qXq]
• [qXr] → 1 | 0[qXq][qXr] | 0[qXr][rXr]
1. [rXr] → 1
2. [rZr] → ε

0. S → [qZr]
1. [qZr] → 0[qXr][rZr]
2. [qXr] → 1 | 0[qXq][qXr]
3. [rXr] → 1
4. [rZr] → ε

29

Example 2: {0n1n}
• PDA = (Q,Σ,Γ,δ,q,Z) , Q = {q,r}, Σ = {0,1}, Γ = {Z,X}, δ is:

1. δ(q,0,Z) → { (q,XZ) }
2. δ(q,0,X) → { (q,XX) }
3. δ(q,1,X) → { (r, ε) }
4. δ(r, 1 ,X) → { (r, ε) }
5. δ(r, ε ,Z) → { (r, ε) }

0. S → [qZq] [qZr]
1. [qZq] → 0 [qXq] [qZq] | 0[qXr][rZq]
2. [qZr] → 0[qXq][qZr] | 0[qXr][rZr]
3. [qXq] → 0 [qXq] [qXq] | 0[qXr][rXq]
4. [qXr] → 1 | 0[qXq][qXr] | 0[qXr][rXr]
5. [rZq] →
6. [rXr] → 1
7. [rZr] → ε
8. [rXq] →

0. S → [qZq] [qZr]
1. [qZq] → 0 [qXq] [qZq]
2. [qZr] → 0[qXq][qZr] | 0[qXr][rZr]
3. [qXq] → 0 [qXq] [qXq]
• [qXr] → 1 | 0[qXq][qXr] | 0[qXr][rXr]
1. [rXr] → 1
2. [rZr] → ε

0. S → [qZr]
1. [qZr] → 0[qXr][rZr]
2. [qXr] → 1 | 0[qXq][qXr]
3. [rXr] → 1
4. [rZr] → ε

0. S → [qZr]
1. [qZr] → 0[qXr]
2. [qXr] → 1 | 0[qXq]1

30

Example 2: {0n1n}
• PDA = (Q,Σ,Γ,δ,q,Z) , Q = {q,r}, Σ = {0,1}, Γ = {Z,X}, δ is:

1. δ(q,0,Z) → { (q,XZ) }
2. δ(q,0,X) → { (q,XX) }
3. δ(q,1,X) → { (r, ε) }
4. δ(r, 1 ,X) → { (r, ε) }
5. δ(r, ε ,Z) → { (r, ε) }

0. S → [qZq] [qZr]
1. [qZq] → 0 [qXq] [qZq] | 0[qXr][rZq]
2. [qZr] → 0[qXq][qZr] | 0[qXr][rZr]
3. [qXq] → 0 [qXq] [qXq] | 0[qXr][rXq]
4. [qXr] → 1 | 0[qXq][qXr] | 0[qXr][rXr]
5. [rZq] →
6. [rXr] → 1
7. [rZr] → ε
8. [rXq] →

Let A=[qZr]
Let B=[qXr]
0. S → A
1. A → 0 B
2. B → 1|0 B 1

0. S → [qZq] [qZr]
1. [qZq] → 0 [qXq] [qZq]
2. [qZr] → 0[qXq][qZr] | 0[qXr][rZr]
3. [qXq] → 0 [qXq] [qXq]
• [qXr] → 1 | 0[qXq][qXr] | 0[qXr][rXr]
1. [rXr] → 1
2. [rZr] → ε

0. S → [qZr]
1. [qZr] → 0[qXr][rZr]
2. [qXr] → 1 | 0[qXq][qXr]
3. [rXr] → 1
4. [rZr] → ε

0. S → [qZr]
1. [qZr] → 0[qXr]
2. [qXr] → 1 | 0[qXq]1

31

Example 2: {0n1n}
• PDA = (Q,Σ,Γ,δ,q,Z) , Q = {q,r}, Σ = {0,1}, Γ = {Z,X}, δ is:

1. δ(q,0,Z) → { (q,XZ) }
2. δ(q,0,X) → { (q,XX) }
3. δ(q,1,X) → { (r, ε) }
4. δ(r, 1 ,X) → { (r, ε) }
5. δ(r, ε ,Z) → { (r, ε) }

0. S → [qZq] [qZr]
1. [qZq] → 0 [qXq] [qZq] | 0[qXr][rZq]
2. [qZr] → 0[qXq][qZr] | 0[qXr][rZr]
3. [qXq] → 0 [qXq] [qXq] | 0[qXr][rXq]
4. [qXr] → 1 | 0[qXq][qXr] | 0[qXr][rXr]
5. [rZq] →
6. [rXr] → 1
7. [rZr] → ε
8. [rXq] →

Let A=[qZr]
Let B=[qXr]
0. S → A
1. A → 0 B
2. B → 1|0 B 1

Simplifying,

S → 0 S 1 | ε

0. S → [qZq] [qZr]
1. [qZq] → 0 [qXq] [qZq]
2. [qZr] → 0[qXq][qZr] | 0[qXr][rZr]
3. [qXq] → 0 [qXq] [qXq]
• [qXr] → 1 | 0[qXq][qXr] | 0[qXr][rXr]
1. [rXr] → 1
2. [rZr] → ε

0. S → [qZr]
1. [qZr] → 0[qXr][rZr]
2. [qXr] → 1 | 0[qXq][qXr]
3. [rXr] → 1
4. [rZr] → ε

0. S → [qZr]
1. [qZr] → 0[qXr]
2. [qXr] → 1 | 0[qXq]1

32

Two ways to build a CFG
Build a PDA Construct 

CFG from PDA

Derive CFG directly

Derive a CFG Construct 
PDA from CFG

Design a PDA directly

Similarly…

(indirect)

(direct)

(indirect)

(direct)

Two ways to build a PDA

