
CS311: 
Computational Theory
Lecture 10: THE CHURCH-TURING THESIS – 

Ch 3

Dr. Manal Helal, Spring 2014.        http://moodle.manalhelal.com



Lecture Learning Objectives
1. Explain the Church-Turing thesis and its 

significance.
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Language of the Turing Machines

• Recursive Enumerable (RE) language
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Introduction
• American mathematician Alonzo Church created a method for defining functions 

called the λ-calculus, 
• British mathematician Alan Turing created a theoretical model for machines, now 

called Turing machines, that could carry out calculations from inputs, 
• Austrian-American mathematician Kurt Gödel, with Jacques Herbrand, created a 

formal definition of a class of functions whose values could be calculated by 
recursion. 

• All three computational processes (recursion, the λ-calculus, and the Turing 
machine) were shown to be equivalent—all three approaches define the same 
class of functions. This has led mathematicians and computer scientists to believe 
that the concept of computability is accurately characterized by these three 
equivalent processes. [wikipedia]



Church–Turing Thesis
• Informally, the Church–Turing thesis states that if 

some method (algorithm) exists to carry out a 
calculation, then the same calculation can also be 
carried out by a Turing machine (as well as by a 
recursively definable function, and by a λ-function).



•To solve a decision problem, an algorithm has to accept each instance 
of the problem as input, and return “Yes” or “No” depending on whether 
the instance is a Yes-instance. 

•To solve a function problem, an algorithm has to accept each instance I 
of the problem as input, and return the unique sol(I). 

•To solve a search problem, an algorithm has to accept each instance I 
of the problem as input, and return either an element of sol(I) or “No” if 
sol(I) is empty (the instance has no solutions). 
•We interpret “algorithm” as “computable function.”

Solving a Problem
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Turing Machines are…
• Very powerful (abstract) machines that could simulate 

any modern day computer (although very, very 
slowly!) 

• Why design such a machine? 
o If a problem cannot be “solved” even using a TM, 

then it implies that the problem is undecidable 

• Computability vs. Decidability

For every input,  
   answer YES or NO 
   



Definition
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A Turing Machine (TM)

• M = (Q, ∑, Γ, δ, q0,qaccept,qreject)

B B B X1 X2 X3 … Xi … Xn B B… …

Finite 
control

Infinite tape with tape symbols

B: blank symbol (special symbol reserved to indicate data boundary)

Input & output tape symbols

Tape head

This is 
like the 
CPU & 
program 
counter
Tape is 
the 
memory
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Transition function 

• One move (denoted by |---)  
in a TM does the following: 

o δ(q,X) = (p,Y,D) 
➢ q is the current state 
➢ X is the current tape symbol pointed by tape 

head 
➢ State changes from q to p 
➢ After the move: 
◇ X is replaced with symbol Y 
◇ If D=“L”, the tape head moves “left” by one 

position.  
Alternatively, if D=“R” the tape head moves 
“right” by one position.

q p
X / Y,D

You can also use: 
 ➔ for R 
 ! for L
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ID of a TM
• Instantaneous Description or ID 

(Configurations): 
o X1X2…Xi-1qXiXi+1…Xn  
   means:  
➢ q is the current state 
➢ Tape head is pointing to Xi 
➢ X1X2…Xi-1XiXi+1…Xn  are the current tape symbols 

• δ(q,Xi) = (p,Y,R)  is same as: 
X1…Xi-1qXi…Xn   |----   X1…Xi-1YpXi+1…Xn  

• δ(q,Xi) = (p,Y,L)   is same as: 
X1…Xi-1qXi…Xn   |----   X1…pXi-1YXi+1…Xn 



Definitions
• Call a language Turing-recognizable if some Turing 

machine recognizes it. 
➢ The machine may accept, reject, or loop.  

• Call a language Turing-decidable or simply 
decidable if some Turing machine decides it.  
➢ The machine may accept, reject, but it never loops.
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Way to check for Membership
• Is a string w accepted by a TM? 

• Initial condition:  
o The (whole) input string w is present in TM, preceded 

and followed by infinite blank symbols 
• Final acceptance: 
o Accept w if TM enters final state and halts 
o If TM halts and not final state, then reject



Example 1: A = {02n | n ≥ 0} 
• M2 that decides A = {02n | n ≥ 0} “On input string w:  

1. Sweep left to right across the tape, crossing off 
every other 0.  

2. If in stage 1 the tape contained a single 0, accept .  
3. If in stage 1 the tape contained more than a single 

0 and the number of 0s was odd, reject .  
4. Return the head to the left-hand end of the tape.  
5. Go to stage 1.” 



Example 1 Solution
• Q={q1, q2, q3, q4, q5, qaccept, qreject}, 
• Σ={0},  
• Γ={0,x,␣}. 
The start, accept,  
and reject states are  
q1, qaccept, and  
qreject, 
respectively. 



Example 1 Sample Run
• Input w: 0000 
• The sequence of configurations the machine enters 

are as follows:



Example 1 Sample Run
• Input w: 000000 
• The sequence of configurations the machine enters are as 

follows: 
q1000000  |---- ␣q200000  |----␣xq30000  |---- 

␣x0q4000  |---- ␣x0xq300  |----␣x0x0q40  |---- 
␣x0x0xq3␣ |---- ␣x0x0q3x␣ |----␣x0xq30x␣ |---- 
␣x0q3x0x␣ |---- ␣xq30x0x␣ |----␣q3x0x0x␣ |---- 
q3␣x0x0x␣ |---- ␣q2x0x0x␣ |----␣xq20x0x␣ |---- 
␣xxq3x0x␣ |---- ␣xxxq30x␣ |----␣xxx0q4x␣ |---- 
␣xxx0xq4␣ |---- ␣xxx0x␣qreject␣



Example 2: B = {w#w| w ∈ {0,1}∗}

• M1 that decides B = {w#w| w ∈ {0,1}∗} on input string 
w:  

o Zig-zag across the tape to corresponding positions on 
either side of the # symbol to check whether these 
positions contain the same symbol. If they do not, or if no # 
is found, reject. Cross off symbols as they are checked to 
keep track of which symbols correspond.  

o When all symbols to the left of the # have been crossed off, 
check for any remaining symbols to the right of the #. If any 
symbols remain, reject; otherwise, accept.” 



Example 2 Solution
• Q={q1, q2, q3, q4, q5, q6, q7, q8, qaccept, qreject}, 
• Σ={0, 1, #},  
• Γ={0,1, #, x, ␣}. 
The start, accept,  
and reject states are  
q1, qaccept, and  
qreject, 
respectively. 



Example 2 Sample Run
• Input w: 011000#011000 
• The sequence of configurations the machine enters 

are as follows:
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Example 3: L = {0n1n | n≥1}

• Strategy:  w = 000111

0 1 1 100 B BBB… …

0 1 1 10X B BBB… …

… 0 Y 1 10X B BBB …

0 Y 1 1XX B BBB… …

0 Y Y 1XX B BBB… …

X Y Y 1XX B BBB …

X Y Y YXX B BBB …

Accept

X Y Y YXX B BBB …

…

…

…

…

…
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Example 3 Solution

q0 q1

0 / X,R

0 / 0,R

q2

1 / Y,L

Y / Y,L

0 / 0,L

X / X,R

q3

Y / Y,R

Y / Y,R

q4

B / B,R

1. Mark next unread 0 with X and 
move right 

2. Move to the right all the way to 
the first unread 1, and mark it 
with Y 

3. Move back (to the left) all the 
way to the last marked X, and 
then move one position to the 
right 

4. If the next position is 0, then goto 
step 1. 
Else move all the way to the right 
to ensure there are no excess 
1s. If not move right to the next 
blank symbol and stop & accept.

Y / Y,R
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Ex 3: TM for {0n1n | n≥1} 
Next Tape Symbol

Curr. State 0 1 X Y B

q0 (q1,X,R) - - (q3,Y,R) -

q1 (q1,0,R) (q2,Y,L) - (q1,Y,R) -

q2 (q2,0,L) - (q0,X,R) (q2,Y,L) -

q3 - - - (q3,Y,R) (q4,B,R)

*q4 - -- - - -

Table representation of the state diagram

*state diagram representation preferred
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TMs for calculations
• TMs can also be used for calculating values 
o Like arithmetic computations 
o Eg., addition, subtraction, multiplication, etc.
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Example 4: Proper Subtraction
“m --  n” = max{m-n,0} 
0m10n ➔ ...B 0m-n B.. (if m>n)  

    ...BB…B..  (otherwise)   
1. For every 0 on the left (mark B),  mark off a 0 on the right (mark 1) 
2. Repeat process, until one of the following happens: 

1. // No more 0s remaining on the left of 1  
Answer is 0, so flip all excess 0s on the right of 1 to Bs (and 
the 1 itself) and halt  

2. //No more 0s remaining on the right of 1 
Answer is m-n, so simply halt after making 1 to B     
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Example 4: Solution



Example 4: Solution
• ∑= { 0. 1 }, Q = {q0, q1, q2, q3, q4, q6}, qaccept = {q5 }  
• transition function =  
•     δ (q0, 0)=(q1, B, R)    δ (q0, 1)=(q6, B, R)  
•     δ (q1, 0)=(q1, 0, R)    δ (q1, 1)=(q2, 1, R)  
•     δ (q2, 0)=(q3, 1, L)       δ (q2, 1)=(q2, 1, R)  
•     δ (q2, B)=(q4, B, L)       δ (q3, 0)=(q3, 0, L)  
•     δ (q3, 1)=(q3, 1, L)       δ (q3, B)=(q0, B, R)  
•     δ (q4, 0)=(q4, 0, L)       δ (q4, 1)=(q4, B, L)  
•     δ (q4, B)=(q5, 0, R)       δ (q6, 0)=(q6, B, R)  
•     δ (q6, 1)=(q6, B, R)   δ(q6, B)=(q5, B, R) .
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Exercise 5: Multiplication

• 0m10n1 (input),  0mn1 (output) 

• Pseudocode: 
1. Move tape head back & forth such that for every 

0 seen in 0m, write n 0s to the right of the last 
delimiting 1 

2. Once written, that zero is changed to B to get 
marked as finished 

3. After completing on all m 0s, make the remaining 
n 0s and 1s also as BsG
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http://turingmaschine.klickagent.ch/einband/?lang=en#2_*_2



Calculations vs. Languages
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A “calculation” is one that takes 
an input and outputs a value (or 
values)

A “language” is a set of strings 
that meet certain criteria

The “language” for a certain calculation is the set of 
strings of the form “<input, output>”, where the 
output corresponds to a valid calculated value for 
the input

“<0#0,0>” 
“<0#1,1>” 
… 
“<2#4,6>” 
… 

E.g., The language Ladd for the addition operation

Membership question == verifying a solution 
e.g., is “<15#12,27>” a member of Ladd ?  


