
CS311:
Computational Theory
Lecture 10: THE CHURCH-TURING THESIS –

Ch 3

Dr. Manal Helal, Spring 2014. http://moodle.manalhelal.com

Lecture Learning Objectives
1. Explain the Church-Turing thesis and its

significance.

Context- 
free

(PDA)

3

Language of the Turing Machines

• Recursive Enumerable (RE) language

Regular
(DFA)

C
on

te
xt

se

ns
iti

ve

R
ec

ur
si

ve
ly
 

E
nu

m
er

ab
le

Introduction
• American mathematician Alonzo Church created a method for defining functions

called the λ-calculus,
• British mathematician Alan Turing created a theoretical model for machines, now

called Turing machines, that could carry out calculations from inputs,
• Austrian-American mathematician Kurt Gödel, with Jacques Herbrand, created a

formal definition of a class of functions whose values could be calculated by
recursion.

• All three computational processes (recursion, the λ-calculus, and the Turing
machine) were shown to be equivalent—all three approaches define the same
class of functions. This has led mathematicians and computer scientists to believe
that the concept of computability is accurately characterized by these three
equivalent processes. [wikipedia]

Church–Turing Thesis
• Informally, the Church–Turing thesis states that if

some method (algorithm) exists to carry out a
calculation, then the same calculation can also be
carried out by a Turing machine (as well as by a
recursively definable function, and by a λ-function).

•To solve a decision problem, an algorithm has to accept each instance
of the problem as input, and return “Yes” or “No” depending on whether
the instance is a Yes-instance.

•To solve a function problem, an algorithm has to accept each instance I
of the problem as input, and return the unique sol(I).

•To solve a search problem, an algorithm has to accept each instance I
of the problem as input, and return either an element of sol(I) or “No” if
sol(I) is empty (the instance has no solutions).
•We interpret “algorithm” as “computable function.”

Solving a Problem

7

Turing Machines are…
• Very powerful (abstract) machines that could simulate

any modern day computer (although very, very
slowly!)

• Why design such a machine?
o If a problem cannot be “solved” even using a TM,

then it implies that the problem is undecidable

• Computability vs. Decidability

For every input,  
 answer YES or NO 

Definition

9

A Turing Machine (TM)

• M = (Q, ∑, Γ, δ, q0,qaccept,qreject)

B B B X1 X2 X3 … Xi … Xn B B… …

Finite
control

Infinite tape with tape symbols

B: blank symbol (special symbol reserved to indicate data boundary)

Input & output tape symbols

Tape head

This is
like the
CPU &
program
counter
Tape is
the
memory

10

Transition function

• One move (denoted by |---)  
in a TM does the following:

o δ(q,X) = (p,Y,D)
➢ q is the current state
➢ X is the current tape symbol pointed by tape

head
➢ State changes from q to p
➢ After the move:
◇ X is replaced with symbol Y
◇ If D=“L”, the tape head moves “left” by one

position.  
Alternatively, if D=“R” the tape head moves
“right” by one position.

q p
X / Y,D

You can also use:
 ➔ for R
 ! for L

11

ID of a TM
• Instantaneous Description or ID

(Configurations):
o X1X2…Xi-1qXiXi+1…Xn
 means:
➢ q is the current state
➢ Tape head is pointing to Xi
➢ X1X2…Xi-1XiXi+1…Xn are the current tape symbols

• δ(q,Xi) = (p,Y,R) is same as:
X1…Xi-1qXi…Xn |---- X1…Xi-1YpXi+1…Xn

• δ(q,Xi) = (p,Y,L) is same as:
X1…Xi-1qXi…Xn |---- X1…pXi-1YXi+1…Xn

Definitions
• Call a language Turing-recognizable if some Turing

machine recognizes it.
➢ The machine may accept, reject, or loop.

• Call a language Turing-decidable or simply
decidable if some Turing machine decides it.
➢ The machine may accept, reject, but it never loops.

13

Way to check for Membership
• Is a string w accepted by a TM?

• Initial condition:
o The (whole) input string w is present in TM, preceded

and followed by infinite blank symbols
• Final acceptance:
o Accept w if TM enters final state and halts
o If TM halts and not final state, then reject

Example 1: A = {02n | n ≥ 0}
• M2 that decides A = {02n | n ≥ 0} “On input string w:

1. Sweep left to right across the tape, crossing off
every other 0.

2. If in stage 1 the tape contained a single 0, accept .
3. If in stage 1 the tape contained more than a single

0 and the number of 0s was odd, reject .
4. Return the head to the left-hand end of the tape.
5. Go to stage 1.”

Example 1 Solution
• Q={q1, q2, q3, q4, q5, qaccept, qreject}, 
• Σ={0},  
• Γ={0,x,␣}. 
The start, accept,  
and reject states are  
q1, qaccept, and  
qreject, 
respectively.

Example 1 Sample Run
• Input w: 0000
• The sequence of configurations the machine enters

are as follows:

Example 1 Sample Run
• Input w: 000000
• The sequence of configurations the machine enters are as

follows:
q1000000 |---- ␣q200000 |----␣xq30000 |----

␣x0q4000 |---- ␣x0xq300 |----␣x0x0q40 |----
␣x0x0xq3␣ |---- ␣x0x0q3x␣ |----␣x0xq30x␣ |----
␣x0q3x0x␣ |---- ␣xq30x0x␣ |----␣q3x0x0x␣ |----
q3␣x0x0x␣ |---- ␣q2x0x0x␣ |----␣xq20x0x␣ |----
␣xxq3x0x␣ |---- ␣xxxq30x␣ |----␣xxx0q4x␣ |----
␣xxx0xq4␣ |---- ␣xxx0x␣qreject␣

Example 2: B = {w#w| w ∈ {0,1}∗}

• M1 that decides B = {w#w| w ∈ {0,1}∗} on input string
w:

o Zig-zag across the tape to corresponding positions on
either side of the # symbol to check whether these
positions contain the same symbol. If they do not, or if no #
is found, reject. Cross off symbols as they are checked to
keep track of which symbols correspond.

o When all symbols to the left of the # have been crossed off,
check for any remaining symbols to the right of the #. If any
symbols remain, reject; otherwise, accept.”

Example 2 Solution
• Q={q1, q2, q3, q4, q5, q6, q7, q8, qaccept, qreject}, 
• Σ={0, 1, #},  
• Γ={0,1, #, x, ␣}. 
The start, accept,  
and reject states are  
q1, qaccept, and  
qreject, 
respectively.

Example 2 Sample Run
• Input w: 011000#011000
• The sequence of configurations the machine enters

are as follows:

21

Example 3: L = {0n1n | n≥1}

• Strategy: w = 000111

0 1 1 100 B BBB… …

0 1 1 10X B BBB… …

… 0 Y 1 10X B BBB …

0 Y 1 1XX B BBB… …

0 Y Y 1XX B BBB… …

X Y Y 1XX B BBB …

X Y Y YXX B BBB …

Accept

X Y Y YXX B BBB …

…

…

…

…

…

22

Example 3 Solution

q0 q1

0 / X,R

0 / 0,R

q2

1 / Y,L

Y / Y,L

0 / 0,L

X / X,R

q3

Y / Y,R

Y / Y,R

q4

B / B,R

1. Mark next unread 0 with X and
move right

2. Move to the right all the way to
the first unread 1, and mark it
with Y

3. Move back (to the left) all the
way to the last marked X, and
then move one position to the
right

4. If the next position is 0, then goto
step 1. 
Else move all the way to the right
to ensure there are no excess
1s. If not move right to the next
blank symbol and stop & accept.

Y / Y,R

23

Ex 3: TM for {0n1n | n≥1}
Next Tape Symbol

Curr. State 0 1 X Y B

q0 (q1,X,R) - - (q3,Y,R) -

q1 (q1,0,R) (q2,Y,L) - (q1,Y,R) -

q2 (q2,0,L) - (q0,X,R) (q2,Y,L) -

q3 - - - (q3,Y,R) (q4,B,R)

*q4 - -- - - -

Table representation of the state diagram

*state diagram representation preferred

24

TMs for calculations
• TMs can also be used for calculating values
o Like arithmetic computations
o Eg., addition, subtraction, multiplication, etc.

25

Example 4: Proper Subtraction
“m -- n” = max{m-n,0}
0m10n ➔ ...B 0m-n B.. (if m>n)  

 ...BB…B.. (otherwise)
1. For every 0 on the left (mark B), mark off a 0 on the right (mark 1)
2. Repeat process, until one of the following happens:

1. // No more 0s remaining on the left of 1  
Answer is 0, so flip all excess 0s on the right of 1 to Bs (and
the 1 itself) and halt

2. //No more 0s remaining on the right of 1 
Answer is m-n, so simply halt after making 1 to B

G
iv

e
st

at
e

di
ag

ra
m

Example 4: Solution

Example 4: Solution
• ∑= { 0. 1 }, Q = {q0, q1, q2, q3, q4, q6}, qaccept = {q5 }
• transition function =
• δ (q0, 0)=(q1, B, R) δ (q0, 1)=(q6, B, R)
• δ (q1, 0)=(q1, 0, R) δ (q1, 1)=(q2, 1, R)
• δ (q2, 0)=(q3, 1, L) δ (q2, 1)=(q2, 1, R)
• δ (q2, B)=(q4, B, L) δ (q3, 0)=(q3, 0, L)
• δ (q3, 1)=(q3, 1, L) δ (q3, B)=(q0, B, R)
• δ (q4, 0)=(q4, 0, L) δ (q4, 1)=(q4, B, L)
• δ (q4, B)=(q5, 0, R) δ (q6, 0)=(q6, B, R)
• δ (q6, 1)=(q6, B, R) δ(q6, B)=(q5, B, R) .

28

Exercise 5: Multiplication

• 0m10n1 (input), 0mn1 (output)

• Pseudocode:
1. Move tape head back & forth such that for every

0 seen in 0m, write n 0s to the right of the last
delimiting 1

2. Once written, that zero is changed to B to get
marked as finished

3. After completing on all m 0s, make the remaining
n 0s and 1s also as BsG

iv
e

st
at

e
di

ag
ra

m

http://turingmaschine.klickagent.ch/einband/?lang=en#2_*_2

Calculations vs. Languages

29

A “calculation” is one that takes
an input and outputs a value (or
values)

A “language” is a set of strings
that meet certain criteria

The “language” for a certain calculation is the set of
strings of the form “<input, output>”, where the
output corresponds to a valid calculated value for
the input

“<0#0,0>”
“<0#1,1>”
…
“<2#4,6>”
…

E.g., The language Ladd for the addition operation

Membership question == verifying a solution 
e.g., is “<15#12,27>” a member of Ladd ?

