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Example	  1:	  

We know L={0n1n0n
 
|n ≥ 0} is not a CFL (pumping lemma) 

Can we show L is decidable? Construct a decider M such that L(M) = L A decider is a TM that always 
halts (in qacc

 
or qrej) and is guaranteed not to go into an infinite loop for any input 

Input: 000001111100000 

Idea: Mark off matching 0s, 1s, and 0s with Xs (left end marked with blank) 

000001111100000  

_00001111100000  

_0000X111100000  

_0000X1111X0000  

_X000X1111X0000  

.... 

Idea	  for	  a	  Decider	  for	  {0n1n0n	  |	  n	  ≥	  0}	  

General Idea: Match each 0 with a 1 and a 0 following the 1. 

1 Implementation Level Description of a Decider for L: 

On input w: 

1. If first symbol = blank, ACCEPT 

2. If first symbol = 1, REJECT 

3. If first symbol = 0, Write a blank to mark left end of tape 

a. If current symbol is 0 or X, skip until it is 1. REJECT if blank. 

b. Write X over 1. Skip 1’s/X’s until you see 0. REJECT if blank. 

c. Write X over 0. Move back to left end of tape. 

4. At left end: Skip X’s until: 

 

 



a. You see 0: Write X over 0 and GOTO 3a 

b. You see 1: REJECT 

c. You see a blank space: ACCEPT 

State Diagram 

 

Note: Some transitions to qREJ (e.g., from qskip0) are not shown to avoid clutter 

 

Try running the decider on: 

010, 001100, ...ACCEPT 

0, 000, 0100, ...REJECT 

What about 010010? 

The decider accepts incorrect strings: 

010010, 010001100ACCEPT!!! 

Accepts (0
n

1
n

0
n

)
*

 

Need to fix it...How?? 

A Simple Fix (to the Decider) 

Scan initially to make sure string is of the form 0*1*0* 

On input w: 

1. If first symbol = blank, ACCEPT  

2. If first symbol = 1, REJECT  

3. If first symbol = 0: if w is not in 00*11*00*, REJECT; else,  



Write a blank to mark left end of tape 

a. If current symbol is 0 or X, skip until it is 1. REJECT if blank.  

b. Write X over 1. Skip 1’s/X’s until you see 0. REJECT if blank.  

c. Write X over 0. Move back to left end of tape.  

4. At left end: Skip X’s until: 

a. You see 0: Write X over 0 and GOTO 3a  

b. You see 1: REJECT  

c. You see a blank space: ACCEPT  

 

The Decider TM for L in all its glory 

 

 



Example 2: 

Design a Turing machine which returns whether an input ranging over {a, b}∗ has an even number of a’s. 

 

Graphically, this can be expressed as:  

 

Example 3: 

Here,	  a	  TM	  M3	  is	  doing	  some	  elementary	  arithmetic.	  It	  decides	  the	  language	  C	  =	  {aibjck|	  i	  ×	  j	  =	  k	  and	  i,	  j,	  
k	  ≥	  1}.	  

M3	  =	  “On	  input	  string	  w:	  

1. Scan	  the	  input	  from	  left	  to	  right	  to	  determine	  whether	  it	  is	  a	  	  member	  of	  a+b+c+	  and	  reject	  if	  
it	  isn’t.	  	  

2. Return	  the	  head	  to	  the	  left-‐hand	  end	  of	  the	  tape.	  	  

3. Cross	  off	  an	  a	  and	  scan	  to	  the	  right	  until	  a	  b	  occurs.	  Shuttle	  	  between	  the	  b’s	  and	  the	  c’s,	  
crossing	  off	  one	  of	  each	  until	  all	  b’s	  are	  gone.	  If	  all	  c’s	  have	  been	  crossed	  off	  and	  some	  b’s	  
remain,	  reject	  .	  	  

4. Restore	  the	  crossed	  off	  b’s	  and	  repeat	  stage	  3	  if	  there	  is	  another	  a	  to	  cross	  off.	  If	  all	  a’s	  have	  
been	  crossed	  off,	  determine	  whether	  all	  c’s	  also	  have	  been	  crossed	  off.	  If	  yes,	  accept;	  
otherwise,	  reject	  .”	  	  

Tracing	  of	  w	  =	  aabbbcccccc	  :	  

xabbbcccccc	  	  

We are defining Turing machines as acceptors – machines which answer a yes or
question. Usually Turing machines are presented as transducer machines, which
given an input give an output. In the case of Turing machines, the output would
be the text left on the tape at the end of a computation.
When describing a Turing machine, it is not very helpful just to list the program
P . Thus, we usually use a graph to depict the machine, where every node
represents a state, and directed edges are labelled with a triple (current symbol
on tape, symbol to write on tape, direction in which to move) representing the
program contents. Thus, there is a connecting arrow from state q to q′ labelled
(a, b, δ) if and only if P (q, a) = (q′, b, δ). As usual, we mark the initial state by
an incoming arrow, and final states by two concentric circles labelled by a Y or
N.
Note that we always assume that the Turing machine starts with the head
pointing at the leftmost symbol of the input string which cannot include the
blank symbol !.
Example: Design a Turing machine which returns whether an input ranging
over {a, b}∗ has an even number of as.

State Read Write Next State Move
q0 a a q1 R
q0 b b q0 R
q0 ! ! qY S
q1 a a q0 R
q1 b b q1 R
q1 ! ! qN S

Graphically, this can be expressed as:

b,b,R

a,a,R

a,a,R

b,b,R

 , ,R

 , ,R

Y

N

We have thus informally shown what it means for a Turing machine to accept a
string. However, before we can prove anything about them, we need to formalize
this notion.
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xayyyzzzccc	  	  

xabbbzzzccc	  	  

xxyyyzzzzzz	  	  

Example 4: 

A TM to add 1 to a binary number (with a 0 in front)  

M = “On input w 

1. Go to the right end of the input string 

2. Move left as long as a 1 is seen, changing it to a 0. 

3. Change the 0 to a 1, and halt.” 

For example, to add 1 to w = 0110011 Change all the ending 1’s to 0’s ⇒ 0110000 Change the next 0 to a 1 
⇒ 0110100 

Example 5: 

A TM to add two numbers: f(x, y) = x + y 

 

when x = 11, and y = 11, the computation proceeds as follows: 

 

  

  



  

  

  

 

Example 6: 

A TM to compute: f(x) = 2x. 

The TM takes x as unary input, and write in the tape xx as unary 

Pseudo-code: 

• Replace every 1 with $ 

• Repeat: 

• Find rightmost $, replace it with 1 

•  Go to right end, insert 1 

• Until no more $ remain 

 

when x = 11, the computation proceeds as follows: 



 

Example 7: 

A TM to compute:  

1 if x > y  

0 if x ≤ 	  y 

 

The TM takes x0y as input, and writes in the tape 1 or 0 

Pseudo-code: 

• Repeat 

• Match a 1 from  x with a 1 from y   

•     Until all of x or y is matched 

• If a 1 from x is not matched 

• Erase tape, write 1 

• else 

• Erase tape, write 0 

Combining Turing Machines: 

 

x + y  if x > y 

0  if x ≤ 	  y 

 

f (x, y) =  

f (x, y) =  


