Turing Machines Examples

Example 1:

We know $\mathrm{L}=\left\{0^{\mathrm{n}} 1^{\mathrm{n}} 0^{\mathrm{n}} \mid \mathrm{n} \geq 0\right\}$ is not a CFL (pumping lemma)
Can we show L is decidable? Construct a decider M such that $L(M)=L$ A decider is a TM that always halts (in $\mathrm{q}_{\text {acc }}$ or $\mathrm{q}_{\mathrm{rej}}$) and is guaranteed not to go into an infinite loop for any input

Input: 000001111100000
Idea: Mark off matching $0 \mathrm{~s}, 1 \mathrm{~s}$, and 0 s with Xs (left end marked with blank)
000001111100000
_00001111100000
_0000X111100000
_0000X1111X0000
_X000X1111X0000

Idea for a Decider for $\left\{0^{n} 1^{n} 0^{n} \mid \mathbf{n} \geq 0\right\}$

General Idea: Match each 0 with a 1 and a 0 following the 1 .
1 Implementation Level Description of a Decider for L:

On input w:

1. If first symbol = blank, ACCEPT
2. If first symbol $=1$, REJECT
3. If first symbol $=0$, Write a blank to mark left end of tape
a. If current symbol is 0 or X , skip until it is 1 . REJECT if blank.
b. Write X over 1. Skip 1 's/X's until you see 0 . REJECT if blank.
c. Write X over 0. Move back to left end of tape.
4. At left end: Skip X's until:
a. You see 0 : Write X over 0 and GOTO 3a
b. You see 1: REJECT
c. You see a blank space: ACCEPT

State Diagram

Note: Some transitions to $q_{\text {REJ }}$ (e.g., from $q_{\text {skip } 0}$) are not shown to avoid clutter

Try running the decider on:
$010,001100, \ldots$ ACCEPT
$0,000,0100, \ldots$ REJECT

What about 010010 ?
The decider accepts incorrect strings:
010010, 010001100ACCEPT!!!
Accepts $\left(\begin{array}{lll}0 & 1 & 0\end{array}\right)$
Need to fix it...How??
A Simple Fix (to the Decider)
Scan initially to make sure string is of the form $0 * 1 * 0^{*}$

On input w:

1. If first symbol = blank, ACCEPT
2. If first symbol $=1$, REJECT
3. If first symbol $=0$: if w is not in $00^{*} 11^{*} 00^{*}$, REJECT; else,

Write a blank to mark left end of tape
a. If current symbol is 0 or X , skip until it is 1 . REJECT if blank.
b. Write X over 1. Skip 1's/X's until you see 0. REJECT if blank.
c. Write X over 0 . Move back to left end of tape.
4. At left end: Skip X's until:
a. You see 0 : Write X over 0 and GOTO 3a
b. You see 1: REJECT
c. You see a blank space: ACCEPT

The Decider TM for L in all its glory

Example 2:

Design a Turing machine which returns whether an input ranging over $\{a, b\}^{*}$ has an even number of a's.

State	Read	Write	Next State	Move
q_{0}	a	a	q_{1}	R
q_{0}	b	b	q_{0}	R
q_{0}	\square	\square	q_{Y}	S
q_{1}	a	a	q_{0}	R
q_{1}	b	b	q_{1}	R
q_{1}	\square	\square	q_{N}	S

Graphically, this can be expressed as:

Example 3:

Here, a TM M M_{3} is doing some elementary arithmetic. It decides the language $\mathrm{C}=\left\{\mathrm{a}^{i} \mathrm{bic}^{\mathrm{k}} \mid \mathrm{i} \times \mathrm{j}=\mathrm{k}\right.$ and i, j, $\mathrm{k} \geq 1$ \}.
$\mathrm{M}_{3}=$ " On input string w :

1. Scan the input from left to right to determine whether it is a member of $\mathrm{a}^{+} \mathrm{b}^{+} \mathrm{c}^{+}$and reject if it isn't.
2. Return the head to the left-hand end of the tape.
3. Cross off an a and scan to the right until a b occurs. Shuttle between the b's and the c's, crossing off one of each until all b's are gone. If all c's have been crossed off and some b's remain, reject.
4. Restore the crossed off b's and repeat stage 3 if there is another a to cross off. If all a's have been crossed off, determine whether all c's also have been crossed off. If yes, accept; otherwise, reject."

Tracing of $w=$ aabbbcccccc :
xabbbcccccc
xayyyzzzccc
xabbbzzzccc
xxyyyzzzzzz

Example 4:

A TM to add 1 to a binary number (with a 0 in front)
$\mathrm{M}=$ "On input w

1. Go to the right end of the input string
2. Move left as long as a 1 is seen, changing it to a 0 .
3. Change the 0 to a 1 , and halt."

For example, to add 1 to $w=0110011$ Change all the ending 1 's to 0 's $\Rightarrow 0110000$ Change the next 0 to a 1 $\Rightarrow 0110100$

Example 5:
A TM to add two numbers: $f(x, y)=x+y$

when $\mathrm{x}=11$, and $\mathrm{y}=11$, the computation proceeds as follows:

Time 0

Time 4

Time 5

Time 6

Time 7

Time 8

Time 9

Time 10

Time 11

Time 12

Example 6:

A TM to compute: $\mathrm{f}(\mathrm{x})=2 \mathrm{x}$.
The TM takes x as unary input, and write in the tape xx as unary

Pseudo-code:

- Replace every 1 with \$
- Repeat:
- Find rightmost $\$$, replace it with 1
- Go to right end, insert 1
- Until no more \$ remain

when $\mathrm{x}=11$, the computation proceeds as follows:

Start

Example 7:

A TM to compute:

$$
f(x, y)= \begin{cases}1 & \text { if } x>y \\ 0 & \text { if } x \leq y\end{cases}
$$

The TM takes $x 0 y$ as input, and writes in the tape 1 or 0

Pseudo-code:

- Repeat
- Match a 1 from x with a 1 from y
- Until all of x or y is matched
- If a 1 from x is not matched
- Erase tape, write 1
- else
- Erase tape, write 0

Combining Turing Machines:

$f(x, y)= \begin{cases}x+y & \text { if } x>y \\ 0 & \text { if } x \leq y\end{cases}$

