
Arab	 Academy	 for	 Science	 &Technology	 and	 Maritime	 Transport	 (AASTMT)	
College	 of	 Computing	 and	 Information	 Technology	 (CCIT)	

Theory	 of	 Computation	 CS311	 –	 Spring	 2014	
Dr.	 Manal	 Helal	

Eng.	 Nada	 Mahmoud	 	

Turing	 Machines	 Examples	

Example	 1:	

We know L={0n1n0n

|n ≥ 0} is not a CFL (pumping lemma)

Can we show L is decidable? Construct a decider M such that L(M) = L A decider is a TM that always
halts (in qacc

or qrej) and is guaranteed not to go into an infinite loop for any input

Input: 000001111100000

Idea: Mark off matching 0s, 1s, and 0s with Xs (left end marked with blank)

000001111100000

_00001111100000

_0000X111100000

_0000X1111X0000

_X000X1111X0000

....

Idea	 for	 a	 Decider	 for	 {0n1n0n	 |	 n	 ≥	 0}	

General Idea: Match each 0 with a 1 and a 0 following the 1.

1 Implementation Level Description of a Decider for L:

On input w:

1. If first symbol = blank, ACCEPT

2. If first symbol = 1, REJECT

3. If first symbol = 0, Write a blank to mark left end of tape

a. If current symbol is 0 or X, skip until it is 1. REJECT if blank.

b. Write X over 1. Skip 1’s/X’s until you see 0. REJECT if blank.

c. Write X over 0. Move back to left end of tape.

4. At left end: Skip X’s until:

a. You see 0: Write X over 0 and GOTO 3a

b. You see 1: REJECT

c. You see a blank space: ACCEPT

State Diagram

Note: Some transitions to qREJ (e.g., from qskip0) are not shown to avoid clutter

Try running the decider on:

010, 001100, ...ACCEPT

0, 000, 0100, ...REJECT

What about 010010?

The decider accepts incorrect strings:

010010, 010001100ACCEPT!!!

Accepts (0
n

1
n

0
n

)
*

Need to fix it...How??

A Simple Fix (to the Decider)

Scan initially to make sure string is of the form 0*1*0*

On input w:

1. If first symbol = blank, ACCEPT

2. If first symbol = 1, REJECT

3. If first symbol = 0: if w is not in 00*11*00*, REJECT; else,

Write a blank to mark left end of tape

a. If current symbol is 0 or X, skip until it is 1. REJECT if blank.

b. Write X over 1. Skip 1’s/X’s until you see 0. REJECT if blank.

c. Write X over 0. Move back to left end of tape.

4. At left end: Skip X’s until:

a. You see 0: Write X over 0 and GOTO 3a

b. You see 1: REJECT

c. You see a blank space: ACCEPT

The Decider TM for L in all its glory

Example 2:

Design a Turing machine which returns whether an input ranging over {a, b}∗ has an even number of a’s.

Graphically, this can be expressed as:

Example 3:

Here,	 a	 TM	 M3	 is	 doing	 some	 elementary	 arithmetic.	 It	 decides	 the	 language	 C	 =	 {aibjck|	 i	 ×	 j	 =	 k	 and	 i,	 j,	
k	 ≥	 1}.	

M3	 =	 “On	 input	 string	 w:	

1. Scan	 the	 input	 from	 left	 to	 right	 to	 determine	 whether	 it	 is	 a	 	 member	 of	 a+b+c+	 and	 reject	 if	
it	 isn’t.	 	

2. Return	 the	 head	 to	 the	 left-‐hand	 end	 of	 the	 tape.	 	

3. Cross	 off	 an	 a	 and	 scan	 to	 the	 right	 until	 a	 b	 occurs.	 Shuttle	 	 between	 the	 b’s	 and	 the	 c’s,	
crossing	 off	 one	 of	 each	 until	 all	 b’s	 are	 gone.	 If	 all	 c’s	 have	 been	 crossed	 off	 and	 some	 b’s	
remain,	 reject	 .	 	

4. Restore	 the	 crossed	 off	 b’s	 and	 repeat	 stage	 3	 if	 there	 is	 another	 a	 to	 cross	 off.	 If	 all	 a’s	 have	
been	 crossed	 off,	 determine	 whether	 all	 c’s	 also	 have	 been	 crossed	 off.	 If	 yes,	 accept;	
otherwise,	 reject	 .”	 	

Tracing	 of	 w	 =	 aabbbcccccc	 :	

xabbbcccccc	 	

We are defining Turing machines as acceptors – machines which answer a yes or
question. Usually Turing machines are presented as transducer machines, which
given an input give an output. In the case of Turing machines, the output would
be the text left on the tape at the end of a computation.
When describing a Turing machine, it is not very helpful just to list the program
P . Thus, we usually use a graph to depict the machine, where every node
represents a state, and directed edges are labelled with a triple (current symbol
on tape, symbol to write on tape, direction in which to move) representing the
program contents. Thus, there is a connecting arrow from state q to q′ labelled
(a, b, δ) if and only if P (q, a) = (q′, b, δ). As usual, we mark the initial state by
an incoming arrow, and final states by two concentric circles labelled by a Y or
N.
Note that we always assume that the Turing machine starts with the head
pointing at the leftmost symbol of the input string which cannot include the
blank symbol !.
Example: Design a Turing machine which returns whether an input ranging
over {a, b}∗ has an even number of as.

State Read Write Next State Move
q0 a a q1 R
q0 b b q0 R
q0 ! ! qY S
q1 a a q0 R
q1 b b q1 R
q1 ! ! qN S

Graphically, this can be expressed as:

b,b,R

a,a,R

a,a,R

b,b,R

 , ,R

 , ,R

Y

N

We have thus informally shown what it means for a Turing machine to accept a
string. However, before we can prove anything about them, we need to formalize
this notion.

60

We are defining Turing machines as acceptors – machines which answer a yes or
question. Usually Turing machines are presented as transducer machines, which
given an input give an output. In the case of Turing machines, the output would
be the text left on the tape at the end of a computation.
When describing a Turing machine, it is not very helpful just to list the program
P . Thus, we usually use a graph to depict the machine, where every node
represents a state, and directed edges are labelled with a triple (current symbol
on tape, symbol to write on tape, direction in which to move) representing the
program contents. Thus, there is a connecting arrow from state q to q′ labelled
(a, b, δ) if and only if P (q, a) = (q′, b, δ). As usual, we mark the initial state by
an incoming arrow, and final states by two concentric circles labelled by a Y or
N.
Note that we always assume that the Turing machine starts with the head
pointing at the leftmost symbol of the input string which cannot include the
blank symbol !.
Example: Design a Turing machine which returns whether an input ranging
over {a, b}∗ has an even number of as.

State Read Write Next State Move
q0 a a q1 R
q0 b b q0 R
q0 ! ! qY S
q1 a a q0 R
q1 b b q1 R
q1 ! ! qN S

Graphically, this can be expressed as:

b,b,R

a,a,R

a,a,R

b,b,R

 , ,R

 , ,R

Y

N

We have thus informally shown what it means for a Turing machine to accept a
string. However, before we can prove anything about them, we need to formalize
this notion.

60

xayyyzzzccc	 	

xabbbzzzccc	 	

xxyyyzzzzzz	 	

Example 4:

A TM to add 1 to a binary number (with a 0 in front)

M = “On input w

1. Go to the right end of the input string

2. Move left as long as a 1 is seen, changing it to a 0.

3. Change the 0 to a 1, and halt.”

For example, to add 1 to w = 0110011 Change all the ending 1’s to 0’s ⇒ 0110000 Change the next 0 to a 1
⇒ 0110100

Example 5:

A TM to add two numbers: f(x, y) = x + y

when x = 11, and y = 11, the computation proceeds as follows:

Example 6:

A TM to compute: f(x) = 2x.

The TM takes x as unary input, and write in the tape xx as unary

Pseudo-code:

• Replace every 1 with $

• Repeat:

• Find rightmost $, replace it with 1

• Go to right end, insert 1

• Until no more $ remain

when x = 11, the computation proceeds as follows:

Example 7:

A TM to compute:

1 if x > y

0 if x ≤ 	 y

The TM takes x0y as input, and writes in the tape 1 or 0

Pseudo-code:

• Repeat

• Match a 1 from x with a 1 from y

• Until all of x or y is matched

• If a 1 from x is not matched

• Erase tape, write 1

• else

• Erase tape, write 0

Combining Turing Machines:

x + y if x > y

0 if x ≤ 	 y

f (x, y) =

f (x, y) =

