
CS311:
Computational Theory

Lecture 11: Decidability– Ch 4

Dr. Manal Helal, Spring 2014. http://moodle.manalhelal.com

Lecture Learning Objectives
1. Understand Computability Theory

The HELLO WORLD assignment

• Suppose your teacher tells you:
o Write a JAVA program to output the word “HELLO

WORLD” on the screen and halt.
• Space and time are not an issue.
• The program is for an ideal computer.
• PASS for any working HELLO program, no partial

credit.

Teacher’s Grading Program
• The grading program G must be able to take any

Java program P and grade it.
 Pass, if P prints “HELLO WORLD”
• G(P)=
 Fail, otherwise. 

How exactly might such a script work?

What kind of program could a student who
hated his/her teacher hand in?

Nasty Program
n:=2;
While (the number 2n can be written as the sum of two primes)
 n++;
Print “HELLO WORLD”;

•The nasty program is a PASS if and only if the Goldbach
conjecture is false.

 Despite the simplicity of the HELLO WORLD
assignment, there is no program

Theory of Computation
• The theory of computation studies
o whether (computability theory or recursion theory),
o and how efficiently (complexity theory)

• certain problems can be solved on a computer, or rather on
a model of a computer.

• Several equivalent models of computational devices can be
used:

o Register machines.
o Lambda calculus.
o Simple while programming language (pseudo-code).
o Turing machines.
o ...

• We focus on Turing machines.

Computability
• Do algorithmic solutions to problems always exist?
• What are the limitations of computational devices?
• Is there any insight to which problems are

algorithmically solvable and which are not?
• Are the unsolvable problems somehow related?

Complexity (CS312)
• How do we compare the efficiency of different

algorithms?
• How do we measure time/memory requirements?
• What problems are efficiently solvable?
• Are there solvable problems which do not have

efficient algorithms?

9

Decidability vs. Undecidability
• There are two types of TMs (based on halting):

(Recursive)
 TMs that always halt, no matter accepting or non-accepting ≡

DECIDABLE PROBLEMS
(Recursively enumerable)
 TMs that are guaranteed to halt only on acceptance. If non-

accepting, it may or may not halt (i.e., could loop forever).

• Undecidability:
o Undecidable problems are those that are not

recursive

Context- 
free

(PDA)

10

Recursive, RE, Undecidable languages

Regular
(DFA)

C
on

te
xt

se

ns
iti

ve

R
ec

ur
si

ve

R
ec

ur
si

ve
ly
 

E
nu

m
er

ab
le

 (R
E

)

Non-RE Languages 
(all other languages for which  
no TMs can be built)

LBA
TMs that always halt

TMs that may or  
may not halt

No TMs exist

“Undecidable” problems
“Decidable” problems

11

Recursive Languages & 
Recursively Enumerable (RE) languages

• Any TM for a Recursive language is going to
look like this:

• Any TM for a Recursively Enumerable (RE)
language is going to look like this:

M
w

“accept”

“reject”

M
w

“accept”

Recognizable and Decidable
Languages

• (Language of M): The language recognized by a TM
M, or simply the language of M is L(M) = {w ∈ Σ∗ | M
accepts w}.

• (Recognizable Language): A language L ⊆ Σ∗ is
recognizable if there exists a TM M such that M
recognizes L, i.e., L = L(M).

• (Decidable Language): A language L ⊆ Σ∗ is
decidable if there exists a TM M such that M is a
decider and M recognizes L, i.e., L = L(M).

Example
• Consider the language L = {anbncn|n≥0}.
• Facts:
o L is not regular,
o L is not context-free, but
o L is recognizable and even decidable language.

Exam Questions
• Definition of a Turing machine, configuration,

computation, acceptance of a string by a TM.
• Definition of a decider.
• Definition of recognizable and decidable languages.

15

Closure Properties of: 
- the Recursive language class, and  

- the Recursively Enumerable language class

16

Recursive Languages are closed
under complementation

o If L is Recursive, L is also Recursive

M
w

“accept”

“reject” “reject”

 “accept”

w

M

M

17

Are Recursively Enumerable Languages
closed under complementation? (NO)

o If L is RE, L need not be RE

M
w

“accept”

“reject”

 “accept”

w

?

?

Mu

Recursive Langs are closed
under Union

Let Mu = TM for L1 U L2

Mu construction:
1. Make 2-tapes and copy

input w on both tapes
2. Simulate M1 on tape 1
3. Simulate M2 on tape 2
4. If either M1 or M2

accepts, then Mu
accepts

– Otherwise, Mu rejects.

18

w

M1

M2

accept

reject

accept

reject

OR

Mn

Recursive Langs are closed under
Intersection

Let Mn = TM for L1 ∩ L2

Mn construction:
1. Make 2-tapes and copy

input w on both tapes
2. Simulate M1 on tape 1
3. Simulate M2 on tape 2
4. If either M1 AND M2

accepts, then Mn
accepts

– Otherwise, Mn rejects.

19

w

M1

M2

accept

reject

accept

reject

ANDAND

20

Other Closure Property Results
• Recursive languages are also closed under:
o Concatenation
o Kleene closure (star operator)
o Homomorphism, and inverse homomorphism

• RE languages are closed under:
o Union, intersection, concatenation, Kleene closure

• RE languages are not closed under:
o complementation

21

“Languages” vs. “Problems”
A “language” is a set of strings

Any “problem” can be expressed as a set of all strings
that are of the form:

o “<input, output>”

==> Every problem also corresponds to a language!!

Think of the language for a “problem” == a verifier for the problem

e.g., Problem (a+b) ≡ Language of strings of the form { “a#b, a+b” }

Computable Functions
• Fix any precise programming language, i.e., Java.
• A program is any finite string of symbols from Σ that a

Java interpreter will run (won’t give a syntax error)
• Recall Σ* is the set of all strings of symbols.

• A function f : Σ* -> Σ* is computable if there is a
program P that computes f, when P is executed on a
computer with ideal memory.

• That is, for all strings x in Σ*, P(x) = f(x).

Computable Functions - Cont’d
• The set of all programs is a countable set!
• The set of all computable functions is also a

countable set!
• Are there countably many functions from Σ* to Σ* ?

Power Sets
• Let S be a set.
• The power set of S is the set of all subsets of S.

• We write the power set as Power(S).

• Proposition: If S is finite, then Power(S) has
cardinality 2|S|

Theorem: For every S, there is no
bijection between S and Power(S)

• Suppose f:S->∏(S) is 1-1 and ONTO.
• Let WEIRD = { x | x ∈ S, x ∉ f(x) } There’s some y in S

such that f(y)=WEIRD
• Is y in WEIRD? YES or NO?
• if y in WEIRD, then y ∈ S, and y ∉ f(y) = WEIRD
• So y is not in WEIRD... but then  

y ∈ S and y ∉ WEIRD = f(y)... So y is in WEIRD...

Contradiction

Theorem: There are uncountably
many functions!

• There is a bijection between - The set of all subsets of Σ*
(the powerset of Σ*)

• The set of all functions f: Σ* -> {0,1} Take a subset S of Σ*,
we map it to the

• function f where:
 f(x) = 1 (x in S), f(x) = 0 (x not in S)
• So the set of all f: Σ* -> {0,1} has the same size as the

powerset of Σ*
• But Σ* is countable, so the powerset of Σ* is uncountable! 

(No bijection between Σ* and Power(Σ*)!)

So there are functions from Σ* to {0,1} that are not
computable. 

  
Can we describe an incomputable one? Can we
describe an interesting, incomputable function?  

Notation And Conventions
• Fix any programming language
• When we refer to “program P” we mean the text of the

source code for P
• P(x) is the final output of program P on input x,

assuming that P eventually halts

P(P)
• It follows from our conventions that P(P) is the output

obtained when we run P on the text of its own source
code.

30

Example 1: The Halting
Problem

An example of a recursive
enumerable problem that is also

undecidable

31

Regular
(DFA)

Context- 
free

(PDA) C
on

te
xt

se

ns
iti

ve

R
ec

ur
si

ve

R
ec

ur
si

ve
ly
 

E
nu

m
er

ab
le

 (R
E

)

Non-RE Languages

The Halting Problem

x

The Famous Halting Set: K
• K is the set of all programs P such that P(P) halts.
• K = { Program P | P(P) halts}

The Halting Problem
• Is there a program HALT such that:

• HALT(P) = yes, if P(P) halts
• HALT(P) = no, if P(P) does not halt

The Halting Problem K = {P | P(P)
halts }

• Is there a program HALT such that:

• HALT(P) = yes, if P∈K
• HALT(P) = no, if P∉K

• HALTS decides whether or not any given program is
in K.

THEOREM: There is no program that can
solve the halting problem! (Alan Turing 1937)

• Suppose a program HALT, solving the halting
problem, existed:

• HALT(P) = yes, if P(P) halts
• HALT(P) = no, if P(P) does not halt

• We will call HALT as a subroutine in a new program
called WEIRD.

The Program WEIRD(P):
If HALT(P) then go into an infinite loop.
Else stop. 
<Put text of subroutine HALT here>

•Does WEIRD(WEIRD) halt or not?
•YES implies HALT(WEIRD) = yes 
but then, WEIRD(WEIRD) will infinite loop

•NO implies HALT(WEIRD) = no but then,
WEIRD(WEIRD) halts

Contradiction

37

What is the Halting Problem?
Definition of the “halting problem”:

• Does a givenTuring Machine M halt on a given input
w?

Machine
M

Input w

38

The Universal Turing Machine
• Given: TM M & its input w
• Aim: Build another TM called “H”, that will output:
o “accept” if M accepts w, and
o “reject” otherwise

• An algorithm for H:
o Simulate M on w

o H(<M,w>) =
accept, if M accepts w

reject, if M does does not accept w

A Turing Machine simulator

Question: If M does not halt on w, what will happen to H?

Implies: H is in RE

39

Of Paradoxes & Strange Loops

A fun book for further reading:
 “Godel, Escher, Bach: An Eternal Golden Braid”  
 by Douglas Hofstadter (Pulitzer winner, 1980)

E.g., Barber’s paradox, Achilles & the Tortoise (Zeno’s paradox) 
 MC Escher’s paintings

40

Example 2: The
Diagonalization Language

Example of a language that is  
not recursive enumerable

(i.e, no TMs exist)

Turing’s argument is just like the DIAGONALIZATION
argument from the theory of infinities.

41

Regular
(DFA)

Context- 
free

(PDA) C
on

te
xt

se

ns
iti

ve

R
ec

ur
si

ve

R
ec

ur
si

ve
ly
 

E
nu

m
er

ab
le

 (R
E

)

Non-RE Languages

The Halting Problem

The Diagonalization language

x

x

42

A Language about TMs &
acceptance

• Let L be the language of all strings <M,w> s.t.:
1. M is a TM (coded in binary) with input alphabet

also binary
2. w is a binary string
3. M accepts input w.

43

Enumerating all binary strings
• Let w be a binary string
• Then 1w ≡ i, where i is some integer
o E.g., If w=ε, then i=1;
o If w=0, then i=2;
o If w=1, then i=3; so on…

• If 1w≡ i, then call w as the ith word or ith binary
string, denoted by wi.

• ==> A canonical ordering of all binary
strings:

o {ε, 0, 1, 00, 01, 10, 11, 000, 100, 101, 110, …..}
o {w1, w2, w3, w4, …. wi, … }

44

Any TM M can also be binary-coded

• M = { Q, {0,1}, Γ, δ, q0,B,F }

o Map all states, tape symbols and transitions to integers
(==>binary strings)

o δ(qi,Xj) = (qk,Xl,Dm) will be represented as:
➢ ==> 0i1 0j1 0k1 0l1 0m

• Result: Each TM can be written down as a long
binary string

• ==> Canonical ordering of TMs:
o {M1, M2, M3, M4, …. Mi, … }

45

The Diagonalization Language
• Ld = { wi | wi ∉ L(Mi) }
o The language of all strings whose corresponding

machine does not accept itself (i.e., its own code)

1 2 3 4 …
1 0 1 0 1 …
2 1 1 0 0 …
3 0 1 0 1 …
4 1 0 0 1 …

i

j

… .
.

.
diagonal

• Table: T[i,j] = 1, if Mi accepts wj  
 = 0, otherwise.

(input word w)

(TMs)

• Make a new language called 
 Ld = {wi | T[i,i] = 0}

46

Ld is not RE (i.e., has no TM)

• Proof (by contradiction):
• Let M be the TM for Ld

• ==> M has to be equal to some Mk s.t.  
 L(Mk) = Ld

• ==> Will wk belong to L(Mk) or not?
1. If wk ∈ L(Mk) ==> T[k,k]=1 ==> wk∉ Ld
– If wk ∉ L(Mk) ==> T[k,k]=0 ==> wk ∈ Ld

• A contradiction either way!!

47

Why should there be languages
that do not have TMs?

We thought TMs can solve everything!!

48

Non-RE languages

Regular
(DFA)

Context- 
free

(PDA) C
on

te
xt

se

ns
iti

ve

R
ec

ur
si

ve

R
ec

ur
si

ve
ly
 

E
nu

m
er

ab
le

 (R
E

)

Non-RE Languages

How come there are languages here?
 (e.g., diagonalization language)

49

One Explanation
There are more languages than TMs

o By pigeon hole principle:
o ==> some languages cannot have TMs

• But how do we show this?

• Need a way to “count & compare” two infinite
sets (languages and TMs)

50

How to count elements in a set?

Let A be a set:

• If A is finite ==> counting is trivial

• If A is infinite ==> how do we count?

• And, how do we compare two infinite sets by
their size?

51

Cantor’s definition of set “size” for
infinite sets (1873 A.D.)

Let N = {1,2,3,…} (all natural numbers)
Let E = {2,4,6,…} (all even numbers)

Q) Which is bigger?
• A) Both sets are of the same size
o “Countably infinite”
o Proof: Show by one-to-one, onto set correspondence from  

 N ==> E
n
1
2
3
.
.
.

f(n)
2
4
6
.
.
.

i.e, for every element in N,  
 there is a unique element in E, 
 and vice versa.

• Let Q be the set of all rational numbers
• Q = { m/n | for all m,n ∈ N }
• Claim: Q is also countably infinite; => |Q|=|N|

52

Example #3

1/1 1/2 1/3 1/4 1/5

2/1 2/2 2/3 2/4 2/5

3/1 3/2 3/3 3/4 3/5

4/1 4/2 4/3 4/4 4/5

5/1 5/2 ….

….

….

….

….

53

Uncountable sets

Example:
• Let R be the set of all real numbers
• Claim: R is uncountable

n
1
2
3
4
.
.
.

f(n)
3 . 1 4 1 5 9 …
5 . 5 5 5 5 5 …
0 . 1 2 3 4 5 …
0 . 5 1 4 3 0 …

E.g. x = 0 . 2 6 4 4 …

 Build x s.t. x cannot possibly  
 occur in the table

Really, really big sets!
(even bigger than countably infinite sets)

Other Non-Computable Functions
• Concrete examples of finitary functions are Busy beaver, Kolmogorov

complexity, or any function that outputs the digits of a noncomputable
number, such as Chaitin's constant.

• Similarly, most subsets of the natural numbers are not computable.
The Halting problem was the first such set to be constructed.

• The Entscheidungsproblem, proposed by David Hilbert, asked
whether there is an effective procedure to determine which
mathematical statements (coded as natural numbers) are true.

o Turing and Church independently showed in the 1930s that this set
of natural numbers is not computable. According to the Church–
Turing thesis, there is no effective procedure (with an algorithm)
which can perform these computations.

55

Therefore, some languages cannot
have TMs…

• The set of all TMs is countably infinite

• The set of all Languages is uncountable

• ==> There should be some languages without TMs
(by PHP)

56

The problem reduction technique,
and reusing other constructions

57

Languages that we know about
• Language of a Universal TM (“UTM”)
o Lu = { <M,w> | M accepts w }
o Result: Lu is in RE but not recursive

• Diagonalization language
o Ld = { wi | Mi does not accept wi }
o Result: Ld is non-RE

58

TMs that accept non-empty
languages

• Lne = { M | L(M) ≠ ∅ }

• Lne is RE

• Proof: (build a TM for Lne using UTM)

UTM
M

“accept” “accept”

Non-deterministic Simulator for Lne

M

Guess w

59

TMs that accept non-empty
languages

• Lne is not recursive

• Proof: (“Reduce” Lu to Lne)
o Idea: M accepts w if and only if L(M’) ≠ ∅

Mne

<M,w>
“accept” “accept”

Lu

M’

Tr
an

sf
or

m
at

io
n

fu
nc

tio
n

Lne

60

Reducability
• To prove: Problem P1 is undecidable

• Given/known: Problem P2 is undecidable
• Reduction idea:

1. “Reduce” P2 to P1:
➢ Convert P2’s input instance to P1’s input instance s.t.

– P2 decides only if P1 decides

2. Therefore, P2 is decidable
3. A contradiction
4. Therefore, P1 has to be undecidable

61

The Reduction Technique

Construct yes

no

DecideP1
instance

P2
instance

Conclusion: If we could solve P1, then we can solve P2 as well

Reduce P2 to P1:
Note:
not same as
P1 ==> P2

62

Summary
• Problems vs. languages
• Decidability

o Recursive
• Undecidability

o Recursively Enumerable
o Not RE
o Examples of languages

• The diagonalization technique
• The set of all rational numbers
• Reducability

