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Lecture Learning Objectives
1. Understand Computability Theory



The HELLO WORLD assignment

• Suppose your teacher tells you:  
o Write a JAVA program to output the word “HELLO 

WORLD” on the screen and halt.  
• Space and time are not an issue. 
• The program is for an ideal computer.  
• PASS for any working HELLO program, no partial 

credit. 



Teacher’s Grading Program
• The grading program G must be able to take any 

Java program P and grade it.  
    Pass, if P prints “HELLO WORLD”  
• G(P)=  
    Fail, otherwise. 

How exactly might such a script work? 

What kind of program could a student who 
hated his/her teacher hand in?  



Nasty Program
n:=2; 
While (the number 2n can be written as the sum of two primes) 
 n++; 
Print “HELLO WORLD”; 

•The nasty program is a PASS if and only if the Goldbach 
conjecture is false.

 Despite the simplicity of the HELLO WORLD 
assignment, there is no program



Theory of Computation
• The theory of computation studies  
o whether (computability theory or recursion theory),  
o and how efficiently (complexity theory) 

• certain problems can be solved on a computer, or rather on 
a model of a computer. 

• Several equivalent models of computational devices can be 
used:  

o Register machines. 
o Lambda calculus. 
o Simple while programming language (pseudo-code). 
o Turing machines. 
o ... 

• We focus on Turing machines.



Computability
• Do algorithmic solutions to problems always exist?  
• What are the limitations of computational devices? 
• Is there any insight to which problems are 

algorithmically solvable and which are not? 
• Are the unsolvable problems somehow related?



Complexity (CS312)
• How do we compare the efficiency of different 

algorithms?  
• How do we measure time/memory requirements? 
• What problems are efficiently solvable? 
• Are there solvable problems which do not have 

efficient algorithms?
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Decidability vs. Undecidability
• There are two types of TMs (based on halting): 

(Recursive)  
 TMs that always halt, no matter accepting or non-accepting ≡ 

DECIDABLE PROBLEMS 
(Recursively enumerable)  
 TMs that are guaranteed to halt only on acceptance. If non-

accepting, it may or may not halt (i.e., could loop forever). 

• Undecidability: 
o Undecidable problems are those that  are not 

recursive



Context- 
free 

(PDA)
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Recursive, RE, Undecidable languages
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Non-RE Languages 
(all other languages for which  
no TMs can be built)

LBA
TMs that always halt

TMs that may or  
may not halt

No TMs exist

“Undecidable” problems
“Decidable” problems
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Recursive Languages & 
Recursively Enumerable (RE) languages

• Any TM for a Recursive language is going to 
look like this: 

• Any TM for a Recursively Enumerable (RE) 
language is going to look like this:

M
w

“accept”

“reject”

M
w

“accept”



Recognizable and Decidable 
Languages

• (Language of M): The language recognized by a TM 
M, or simply the language of M is L(M) = {w ∈ Σ∗ | M 
accepts w}.  

• (Recognizable Language): A language L ⊆ Σ∗ is 
recognizable if there exists a TM M such that M 
recognizes L, i.e., L = L(M).  

• (Decidable Language): A language L ⊆ Σ∗ is 
decidable if there exists a TM M such that M is a 
decider and M recognizes L, i.e., L = L(M). 



Example
• Consider the language L = {anbncn|n≥0}.  
• Facts: 
o L is not regular,  
o L is not context-free, but 
o L is recognizable and even decidable language. 



Exam Questions
• Definition of a Turing machine, configuration, 

computation, acceptance of a string by a TM.  
• Definition of a decider. 
• Definition of recognizable and decidable languages. 
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Closure Properties of: 
- the Recursive language class, and   

- the Recursively Enumerable language class
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Recursive Languages are closed 
under complementation

o If L is Recursive, L is also Recursive

M
w

“accept”

“reject” “reject”

 “accept”

w

M



M
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Are Recursively Enumerable Languages 
closed under complementation?  (NO)

o If L is RE, L need not be RE

M
w

“accept”

“reject”

 “accept”

w

?

?



Mu

Recursive Langs are closed 
under Union

Let Mu = TM for L1 U L2 

Mu construction: 
1. Make 2-tapes and copy 

input w on both tapes 
2. Simulate M1 on tape 1  
3. Simulate M2 on tape 2 
4. If either M1 or M2 

accepts, then Mu 
accepts 

– Otherwise, Mu rejects.
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w

M1

M2

accept

reject

accept

reject

OR



Mn

Recursive Langs are closed under 
Intersection

Let Mn = TM for L1 ∩ L2 

Mn construction: 
1. Make 2-tapes and copy 

input w on both tapes 
2. Simulate M1 on tape 1  
3. Simulate M2 on tape 2 
4. If either M1 AND M2 

accepts, then Mn 
accepts 

– Otherwise, Mn rejects.
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w

M1

M2

accept

reject

accept

reject

ANDAND
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Other Closure Property Results
• Recursive languages are also closed under: 
o Concatenation 
o Kleene closure (star operator) 
o Homomorphism, and inverse homomorphism 

• RE languages are closed under: 
o Union, intersection, concatenation, Kleene closure 

• RE languages are not closed under: 
o complementation
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“Languages” vs. “Problems”
A “language” is a set of strings 

Any “problem” can be expressed as a set of all strings 
that are of the form: 

o “<input, output>” 

==> Every problem also corresponds to a language!!

Think of the language for a “problem”  == a verifier for the problem

e.g., Problem (a+b) ≡ Language of strings of the form { “a#b, a+b” }



Computable Functions 
• Fix any precise programming language, i.e., Java. 
• A program is any finite string of symbols from Σ that a 

Java interpreter will run (won’t give a syntax error) 
• Recall Σ* is the set of all strings of symbols. 

• A function f : Σ* -> Σ* is computable if there is a 
program P that computes f, when P is executed on a 
computer with ideal memory. 

• That is, for all strings x in Σ*, P(x) = f(x).



Computable Functions - Cont’d
• The set of all programs is a countable set! 
• The set of all computable functions is also a 

countable set! 
• Are there countably many functions from Σ* to Σ* ?



Power Sets 
• Let S be a set.  
• The power set of S is the set of all subsets of S.  

• We write the power set as Power(S).  

• Proposition: If S is finite, then Power(S) has 
cardinality 2|S| 



Theorem: For every S, there is no 
bijection between S and Power(S)

• Suppose f:S->∏(S) is 1-1 and ONTO.  
• Let WEIRD = { x | x ∈ S, x ∉ f(x) } There’s some y in S 

such that f(y)=WEIRD  
• Is y in WEIRD? YES or NO? 
• if y in WEIRD, then y ∈ S, and y ∉ f(y) = WEIRD  
• So y is not in WEIRD... but then  

y ∈ S and y ∉ WEIRD = f(y)... So y is in WEIRD... 

Contradiction



Theorem: There are uncountably 
many functions!

• There is a bijection between - The set of all subsets of Σ* 
(the powerset of Σ* )  

• The set of all functions f: Σ* -> {0,1} Take a subset S of Σ*, 
we map it to the  

• function f where:  
   f(x) = 1  (x in S),  f(x) = 0 (x not in S) 
• So the set of all f: Σ* -> {0,1} has the same size as the 

powerset of Σ* 
• But Σ* is countable, so the powerset of Σ* is uncountable! 

(No bijection between Σ* and Power(Σ*)!) 



So there are functions from Σ* to {0,1} that are not 
computable. 

  
Can we describe an incomputable one? Can we 
describe an interesting, incomputable function?  



Notation And Conventions 
• Fix any programming language 
• When we refer to “program P” we mean the text of the 

source code for P  
• P(x) is the final output of program P on input x, 

assuming that P eventually halts 



P(P) 
• It follows from our conventions that P(P) is the output 

obtained when we run P on the text of its own source 
code. 
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Example 1: The Halting 
Problem

An example of a recursive 
enumerable problem that is also 

undecidable
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Non-RE Languages

The Halting Problem

x



The Famous Halting Set: K
• K is the set of all programs P such that P(P) halts.  
• K = { Program P | P(P) halts} 



The Halting Problem 
• Is there a program HALT such that:  

• HALT(P) = yes, if P(P) halts  
• HALT(P) = no, if P(P) does not halt 



The Halting Problem K = {P | P(P) 
halts }

• Is there a program HALT such that:  

• HALT(P) = yes, if P∈K  
• HALT(P) = no, if P∉K  

• HALTS decides whether or not any given program is 
in K. 



THEOREM: There is no program that can 
solve the halting problem! (Alan Turing 1937)

• Suppose a program HALT, solving the halting 
problem, existed:  

• HALT(P) = yes, if P(P) halts  
• HALT(P) = no, if P(P) does not halt  

• We will call HALT as a subroutine in a new program 
called WEIRD. 



The Program WEIRD(P):
If HALT(P) then go into an infinite loop.  
Else stop. 
<Put text of subroutine HALT here>  

•Does WEIRD(WEIRD) halt or not?  
•YES implies HALT(WEIRD) = yes 
but then, WEIRD(WEIRD) will infinite loop  

•NO implies HALT(WEIRD) = no but then, 
WEIRD(WEIRD) halts 

Contradiction
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What is the Halting Problem?
Definition of the “halting problem”: 

• Does a givenTuring Machine M halt on a given input 
w?

Machine 
M

Input w
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The Universal Turing Machine
• Given: TM M & its input w 
• Aim: Build another TM called “H”, that will output: 
o “accept” if M accepts w, and  
o “reject” otherwise 

• An algorithm for H: 
o Simulate M on w 

o H(<M,w>)  =     
accept, if M accepts w 

reject,  if M does does not accept w

A Turing Machine simulator

Question:  If M does not halt on w, what will happen to H?

Implies: H is in RE
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Of Paradoxes & Strange Loops

A fun book for further reading: 
 “Godel, Escher, Bach: An Eternal Golden Braid”  
  by Douglas Hofstadter (Pulitzer winner, 1980)

E.g., Barber’s paradox, Achilles & the Tortoise (Zeno’s paradox) 
 MC Escher’s paintings



40

Example 2: The 
Diagonalization Language

Example of a language that is  
not recursive enumerable 

(i.e, no TMs exist)

Turing’s argument is just like the DIAGONALIZATION 
argument from the theory of infinities.  
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Non-RE Languages

The Halting Problem

The Diagonalization language

x

x
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A Language about TMs & 
acceptance

• Let L be the language of all strings <M,w> s.t.: 
1. M is a TM (coded in binary) with input alphabet 

also binary 
2. w is a binary string 
3. M accepts input w. 
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Enumerating all binary strings
• Let w be a binary string 
• Then 1w ≡ i, where i is some integer 
o E.g.,  If w=ε, then i=1; 
o          If w=0, then i=2;  
o          If w=1, then i=3; so on… 

• If 1w≡ i, then call w as the ith word or ith binary 
string, denoted by wi. 

•  ==> A canonical ordering of all binary 
strings: 

o {ε, 0, 1, 00, 01, 10, 11, 000, 100, 101, 110, …..} 
o {w1, w2, w3, w4, …. wi, … }
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Any TM M can also be binary-coded

• M = { Q, {0,1}, Γ, δ, q0,B,F } 

o Map all states, tape symbols and transitions to integers 
(==>binary strings) 

o δ(qi,Xj) = (qk,Xl,Dm) will be represented as: 
➢ ==> 0i1 0j1 0k1 0l1 0m 

• Result: Each TM can be written down as a long 
binary string 

• ==> Canonical ordering of TMs: 
o {M1, M2, M3, M4, …. Mi, … }
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The Diagonalization Language
• Ld = { wi | wi ∉ L(Mi) } 
o The language of all strings whose corresponding 

machine does not accept itself (i.e., its own code)

1 2 3 4 …
1 0 1 0 1 …
2 1 1 0 0 …
3 0 1 0 1 …
4 1 0 0 1 …

i

j

… .
.

.
diagonal

• Table: T[i,j] = 1, if Mi accepts wj  
          = 0, otherwise. 

(input word w)

(TMs)

• Make a new language called 
          Ld = {wi | T[i,i] = 0}
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Ld is not RE (i.e., has no TM)

• Proof (by contradiction): 
• Let M be the TM for Ld 

• ==> M has to be equal to some Mk s.t.  
  L(Mk) = Ld 

• ==> Will wk belong to L(Mk) or not? 
1. If wk ∈ L(Mk) ==> T[k,k]=1 ==> wk∉ Ld  
– If wk ∉ L(Mk) ==> T[k,k]=0 ==> wk ∈ Ld 

• A contradiction either way!!
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Why should there be languages 
that do not have TMs?

We thought TMs can solve everything!!
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Non-RE languages
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Non-RE Languages

How come there are languages here? 
 (e.g., diagonalization language)
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One Explanation 
There are more languages than TMs 

o By pigeon hole principle: 
o ==> some languages cannot have TMs 

• But how do we show this? 

• Need a way to “count & compare” two infinite 
sets (languages and TMs)
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How to count elements in a set?

Let A be a set: 

• If A is finite  ==> counting is trivial 

• If A is infinite ==> how do we count? 

• And, how do we compare two infinite sets by 
their size?
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Cantor’s definition of set “size” for 
infinite sets (1873 A.D.)

Let N = {1,2,3,…} (all natural numbers) 
Let E = {2,4,6,…} (all even numbers)  

Q) Which is bigger? 
• A)  Both sets are of the same size 
o “Countably infinite” 
o Proof: Show by one-to-one, onto set correspondence from  

  N ==> E
n 
1 
2 
3 
. 
. 
.

f(n) 
2 
4 
6 
. 
. 
.

i.e, for every element in N,  
       there is a unique element in E, 
 and vice versa.



• Let Q be the set of all rational numbers 
• Q = { m/n  |    for all m,n ∈ N } 
• Claim: Q is also countably infinite; => |Q|=|N|
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Example #3

1/1 1/2 1/3 1/4 1/5

2/1 2/2 2/3 2/4 2/5

3/1 3/2 3/3 3/4 3/5

4/1 4/2 4/3 4/4 4/5

5/1 5/2 ….

….

….

….

….
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Uncountable sets

Example:  
• Let R be the set of all real numbers 
• Claim: R is uncountable

n 
1 
2 
3 
4 
. 
. 
.

f(n)
3 . 1 4 1 5 9 … 
5 . 5 5 5 5 5 … 
0 . 1 2 3 4 5 … 
0 . 5 1 4 3 0 …

E.g. x = 0 . 2 6 4 4 …

 Build x s.t. x cannot possibly  
    occur in the table

Really, really big sets! 
(even bigger than countably infinite sets)



Other Non-Computable Functions
• Concrete examples of finitary functions are Busy beaver, Kolmogorov 

complexity, or any function that outputs the digits of a noncomputable 
number, such as Chaitin's constant. 

• Similarly, most subsets of the natural numbers are not computable. 
The Halting problem was the first such set to be constructed.  

• The Entscheidungsproblem, proposed by David Hilbert, asked 
whether there is an effective procedure to determine which 
mathematical statements (coded as natural numbers) are true.  

o Turing and Church independently showed in the 1930s that this set 
of natural numbers is not computable. According to the Church–
Turing thesis, there is no effective procedure (with an algorithm) 
which can perform these computations.
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Therefore, some languages cannot 
have TMs…

• The set of all TMs is countably infinite 

• The set of all Languages is uncountable 

• ==> There should be some languages without TMs 
( by PHP)
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The problem reduction technique, 
and reusing other constructions
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Languages that we know about
• Language of a Universal TM (“UTM”) 
o Lu = { <M,w> | M accepts w } 
o Result: Lu is in RE but not recursive 

• Diagonalization language 
o Ld = { wi | Mi does not accept wi } 
o Result: Ld is non-RE
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TMs that accept non-empty 
languages

• Lne = { M | L(M) ≠ ∅ } 

• Lne is RE 

• Proof:   (build a TM for Lne using UTM)

UTM
M

“accept”  “accept”

Non-deterministic Simulator for Lne

M

Guess w
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TMs that accept non-empty 
languages

• Lne is not recursive 

• Proof:   (“Reduce” Lu to Lne) 
o Idea: M accepts w if and only if L(M’) ≠ ∅ 

Mne

<M,w>
“accept”  “accept”

Lu 

M’

Tr
an

sf
or

m
at

io
n 

fu
nc

tio
n

Lne 
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Reducability
• To prove: Problem P1 is undecidable 

• Given/known: Problem P2 is undecidable 
• Reduction idea: 

1. “Reduce” P2 to P1: 
➢ Convert P2’s input instance to P1’s input instance s.t.  

– P2 decides only if P1 decides 

2. Therefore, P2 is decidable   
3. A contradiction 
4. Therefore, P1 has to be undecidable
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The Reduction Technique

Construct yes

no

DecideP1 
instance

P2 
instance

Conclusion: If we could solve P1, then we can solve P2 as well

Reduce P2 to P1:
Note:  
not same as  
P1 ==> P2
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Summary
• Problems vs. languages 
• Decidability 

o Recursive 
• Undecidability 

o Recursively Enumerable 
o Not RE 
o Examples of languages  

• The diagonalization technique 
• The set of all rational numbers 
• Reducability


