# Arab Academy for Science \&Technology and Maritime Transport (AASTMT) College of Computing and Information Technology (CCIT) <br> Theory of Computation CS311 - Spring 2014 <br> Dr. Manal Helal <br> Eng. Nada Mahmoud 

Section 10-18 ${ }^{\text {th }}$ of May 2014

1. For $\sum:\{a, b\}$, design a Turing machine that accepts:
$L=\left\{a^{n} b^{n}: n \geq 1\right\}$
Intuitively, we solve the problem in the following fashion. starting at the Leftmost a, we check it off by replacing it with some symbol, say $x$. We then let the read-write head travel right to final the leftmost $b$, which in turn is checked off by replacing it with another symbol, say $y$. After that, we go left again to the leftmost a, replace it with an $x$, then move to the leftmost $b$ and replace it with $y$, and so on. Traveling back and forth this way' we match each a with a corresponding $b$. If after some time no a's or b's remain, then the string must be in $L$.
working out the details, we arrive at a complete solution for which:
$Q:\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}\right\}$
F: $\left\{q_{4}\right\}$
$\sum:\{\mathrm{a}, \mathrm{b}\}$,
$\Gamma:\{\mathrm{a}, \mathrm{b}, \mathrm{x}, \mathrm{y}, \square\}$

The transitions can be broken into several parts. The set
$\delta\left(\mathrm{q}_{0}, \mathrm{a}\right)=\left(\mathrm{q}_{1}, \mathrm{x}, \mathrm{R}\right)$
$\delta\left(\mathrm{q}_{1}, \mathrm{a}\right)=\left(\mathrm{q}_{1}, \mathrm{a}, \mathrm{R}\right)$
$\delta\left(\mathrm{q}_{1}, \mathrm{y}\right)=\left(\mathrm{q}_{1}, \mathrm{y}, \mathrm{R}\right)$
$\delta\left(\mathrm{q}_{1}, \mathrm{~b}\right)=\left(\mathrm{q}_{2}, \mathrm{y}, \mathrm{L}\right)$
Replaces the leftmost a with an $x$, then causes the read-write head to travel right to the first $b$, replacing it with a $y$. when the $y$ is written, the machine enters state $q_{2}$, indicating that an a has been successfully paired with a b.

The next set of transitions reverses the direction until an $x$ is encountered, repositions that readwrite head over the leftmost a, and returns control to the initial state.
$\delta\left(q_{2}, y\right)=\left(q_{2}, y, L\right)$
$\delta\left(\mathrm{q}_{2}, \mathrm{a}\right)=\left(\mathrm{q}_{2}, \mathrm{a}, \mathrm{L}\right)$
$\delta\left(\mathrm{q}_{2}, \mathrm{x}\right)=\left(\mathrm{q}_{0}, \mathrm{x}, \mathrm{R}\right)$
We are now back in the initial state $q_{0}$, ready to deal with the next a and $b$. After one pass through this part of the computation, the machine will have carried out the partial computation:
$q_{0} a a \operatorname{l.} a b b \ldots b \vdash$ xq $_{1} a \ldots a y b \ldots b$
So that a single a has been matched with a single $b$. After two passes, we will have completed the partial computation
$q_{0} a a \ldots$... $a b b \ldots \vdash^{*} x^{x} q_{1} \ldots$ ayy ... b
And so on, indicating that the matching process is being carried out properly.
When the input is a string $a^{n} b^{n}$, the rewriting continues this way, stopping only when there are no more a's to be erased. When looking for the leftmost a, the read-write head travels left with the machine in state $q_{2}$. When an $x$ is encountered, the direction is reversed to get the $a$. But now, instead of finding an a it will find a y. To terminate, a final check is made to see if all a's and b's have been replaced (to detect input where an a follows a b). This can be done by:
$\delta\left(q_{0}, y\right)=\left(q_{3}, y, R\right)$
$\delta\left(q_{3}, y\right)=\left(q_{3}, y, R\right)$,
$\delta\left(\mathrm{q}_{3}, \square\right)=\left(\mathrm{q}_{4}, \square, \mathrm{R}\right)$.

If we input a string not in the language, the computation will halt in a non-final state. For example, if we give the machine a string $a^{n} b^{m}$, with $n>m$, the machine will eventually encounter a blank in state $\mathrm{q}_{1}$. It will halt because no transition is specified for this case. Other input not in the language will also lead to a non-final halting state.

The particular input "aabb" gives the following successive instantaneous descriptions:

$$
\begin{aligned}
& q_{0} a a b b \vdash \quad \mathrm{xq}_{1} \mathrm{abb} \vdash \mathrm{xaq}_{1} \mathrm{bb} \vdash \mathrm{xq}_{2} \mathrm{ayb} \vdash \\
& \mathrm{q}_{2} \mathrm{xayb} \vdash \mathrm{xq}_{0} \mathrm{ayb} \vdash \mathrm{xxq}_{1} \mathrm{yb} \vdash \\
& x x y q_{1} b \vdash \mathrm{xxq}_{2} y y \vdash \mathrm{xq}_{2} x y y \vdash \\
& x x q_{0} y+x x y q_{3} y \vdash \text { xxyyq }_{3} \square \vdash \\
& \mathrm{xxyy} \square \mathrm{q}_{4} \square .
\end{aligned}
$$

At this point the Turing machine halts in a final state, so the string aabb is accepted.
Trace with "ab", and "aaabbb"
2. Consider the following Turing machine M :

(a) Give the computation path trace for initial configuration $\mathrm{q}_{0} \mathrm{abab}$.
(b) Give the computation path trace for initial configuration $\mathrm{q}_{0} \mathrm{abba}$.
(c) Give a regular expression for $L(M)$.

