
ISBN 0-321-49362-1

Chapter 16

Logic Programming
Languages

Copyright © 2015 Pearson. All rights reserved. 2

Chapter 16 Topics

• Introduction
• A Brief Introduction to Predicate Calculus
• Predicate Calculus and Proving Theorems
• An Overview of Logic Programming
• The Origins of Prolog
• The Basic Elements of Prolog
• Deficiencies of Prolog
• Applications of Logic Programming

Copyright © 2015 Pearson. All rights reserved. 3

Introduction

• Programs in logic languages are expressed
in a form of symbolic logic

• Use a logical inferencing process to produce
results

• Declarative rather that procedural:
– Only specification of results are stated (not
detailed procedures for producing them)

Copyright © 2015 Pearson. All rights reserved. 4

Proposition

• A logical statement that may or may not be
true
– Consists of objects and relationships of objects
to each other

man(jake)  
like(bob, steak)

Copyright © 2015 Pearson. All rights reserved. 5

Symbolic Logic

• Logic which can be used for the basic needs
of formal logic:
– Express propositions
– Express relationships between propositions
– Describe how new propositions can be inferred
from other propositions

• Particular form of symbolic logic used for
logic programming called predicate calculus

First-order logic quantifies only variables that range over individuals; second-order logic, in addition, also
quantifies over sets; third-order logic also quantifies over sets of sets, and so on.

Copyright © 2015 Pearson. All rights reserved. 6

Object Representation

• Objects in propositions are represented by
simple terms: either constants or variables

• Constant: a symbol that represents an
object

• Variable: a symbol that can represent
different objects at different times
– Different from variables in imperative languages

Copyright © 2015 Pearson. All rights reserved. 7

Compound Terms

• Atomic propositions consist of compound
terms

• Compound term: one element of a
mathematical relation, written like a
mathematical function
– Mathematical function is a mapping
– Can be written as a table or list

Copyright © 2015 Pearson. All rights reserved. 8

Parts of a Compound Term

• Compound term composed of two parts
– Functor: function symbol that names the
relationship

– Ordered list of parameters (tuple)

• Examples:
 student(jon)

 like(seth, OSX)
 like(nick, windows)
 like(jim, linux)

1-tuple

2-tuple

Copyright © 2015 Pearson. All rights reserved. 9

Forms of a Proposition

• Propositions can be stated in two forms:
– Fact: proposition is assumed to be true
– Query: truth of proposition is to be determined

• Compound proposition:
– Have two or more atomic propositions
– Propositions are connected by operators

Copyright © 2015 Pearson. All rights reserved. 10

Logical Operators

Name Symbol Example Meaning

negation ¬ ¬ a not a

conjunction ∩ a ∩ b a and b

disjunction ∪ a ∪ b a or b

equivalence ≡ a ≡ b a is equivalent to b

implication ⊃
⊂

a ⊃ b
a ⊂ b

a implies b
b implies a

Copyright © 2015 Pearson. All rights reserved. 11

Quantifiers

Name Example Meaning

universal ∀X.P For all X, P is true

existential ∃X.P There exists a value of X such that
P is true

12

Examples

a∩b ⊃C

a∩¬b ⊃d ==> (a∩(¬b)) ⊃d 

∀X.(woman(X) ⊃ human(X))

∃X.(mother(mary, X) ∩ male(X))

Copyright © 2015 Pearson. All rights reserved. 13

Clausal Form

•Too many ways to state the same thing
•Use a standard form for propositions
•Clausal form:
– B1 ∪ B2 ∪ … ∪ Bn ⊂ A1 ∩ A2 ∩ … ∩ Am

– means if all the As are true, then at least one
B is true

•Antecedent: right side
•Consequent: left side

14

» Existential quantifiers are not required
» Universal quantifiers are implicit in the use
of variables in the atomic propositions

» No operators other than conjunction and
disjunction are required: disjunction on the
left side (consequent) and conjunction on
the right side (antecedent).

Clausal Form Characteristics

15

» likes(bob, trout) ⊂ likes(bob, fish) ∩ fish(trout)

» father(louis, al) ∪ father(louis, violet) ⊂ 
 father(al, bob) ∩ mother(violet, bob)  
 ∩ grandfather(louis, bob)

Example

Copyright © 2015 Pearson. All rights reserved. 16

Predicate Calculus and Proving Theorems

• A use of propositions is to discover new
theorems that can be inferred from known
axioms and theorems

• Resolution: an inference principle that allows
inferred propositions to be computed from
given propositions

17

» father(bob, jake) ∪ mother(bob, jake) ⊂ parent(bob, jake)
» grandfather(bob, fred) ⊂ father(bob, jake) ∩ father(jake, fred)
» resolution says that:

» mother(bob, jake) ∪ grandfather(bob, fred) ⊂ parent(bob,
jake) ∩ father(jake, fred)

» In English:
» if: bob is the parent of jake implies that bob is either the  

 father or mother of jake
» and: bob is the father of jake and jake is the father of fred  

 implies that bob is the grandfather of fred
» then: if bob is the parent of jake and jake is the father of fred

then: either bob is jake’s mother or bob is fred’s grandfather

Example

18

Producing the Inferred Rule:

» Or all the Left hand side terms
» And all the right hand side terms
» Remove terms that appear on both sides

Copyright © 2015 Pearson. All rights reserved. 19

Resolution when using variables

• Unification: finding values for variables in
propositions that allows matching process to
succeed

• Instantiation: assigning temporary values to
variables to allow unification to succeed

• After instantiating a variable with a value, if
matching fails, may need to backtrack and
instantiate with a different value

Copyright © 2015 Pearson. All rights reserved. 20

Proof by Contradiction

• Hypotheses: a set of pertinent propositions
• Goal: negation of theorem stated as a
proposition

• Theorem is proved by finding an
inconsistency

Copyright © 2015 Pearson. All rights reserved. 21

Theorem Proving

• Basis for logic programming
• When propositions used for resolution, only
restricted form can be used

• Horn clause - can have only two forms
– Headed: single atomic proposition on left side

– likes(bob, trout) ⊂ likes(bob, fish) ∩ fish(trout)
– Headless: empty left side (used to state facts)

– father(bob, jake)

• Most propositions can be stated as Horn
clauses

Copyright © 2015 Pearson. All rights reserved. 22

Overview of Logic Programming

• Declarative semantics
– There is a simple way to determine the meaning of
each statement

– Simpler than the semantics of imperative languages
• Programming is nonprocedural

– Programs do not state how a result is to be
computed, but rather the form of the result

– Predicate calculus supplies the basic form of
communication to the computer, and resolution
provides the inference technique.

Copyright © 2015 Pearson. All rights reserved. 23

Example: Sorting a List

• Describe the characteristics of a sorted list,
not the process of rearranging a list

 sort(old_list, new_list) ⊂ permute (old_list, new_list)
∩ sorted (new_list)

 sorted (list) ⊂ ∀j such that 1≤ j < n, list(j) ≤ list (j
+1)

Copyright © 2015 Pearson. All rights reserved. 24

The Origins of Prolog

• University of Aix-Marseille (Calmerauer &
Roussel)
– Natural language processing

• University of Edinburgh (Kowalski)
– Automated theorem proving

Copyright © 2015 Pearson. All rights reserved. 25

Terms

• This book uses the Edinburgh syntax of Prolog
• All Prolog statement, as well as Prolog data, are
constructed from terms.

• Term: a constant, variable, or structure
• Constant: an atom or an integer
• Atom: symbolic value of Prolog
• Atom consists of either:

– a string of letters, digits, and underscores beginning with a
lowercase letter

– a string of printable ASCII characters delimited by
apostrophes

Copyright © 2015 Pearson. All rights reserved. 26

Terms: Variables and Structures

• Variable: any string of letters, digits, and
underscores beginning with an uppercase
letter

• Instantiation: binding of a variable to a
value
– Lasts only as long as it takes to satisfy one
complete goal

• Structure: represents atomic proposition
functor(parameter list)

Copyright © 2015 Pearson. All rights reserved. 27

Fact Statements

• Used for the hypotheses
• Headless Horn clauses
 female(shelley).

 male(bill).
 female(mary).

 male(jake).

 father(bill, jake).
 father(bill, shelley).

 mother(mary, jake).
 mother(mary, shelley).

Copyright © 2015 Pearson. All rights reserved. 28

Rule Statements

• Used for the hypotheses
• Headed Horn clause
• Right side: antecedent (if part)

– May be single term or conjunction

• Left side: consequent (then part)
– Must be single term

• Conjunction: multiple terms separated by
logical AND operations (implied)

Copyright © 2015 Pearson. All rights reserved. 29

Example Rules

 ancestor(mary,shelley):- mother(mary,shelley).

• Can use variables (universal objects) to
generalize meaning:

 parent(X,Y):- mother(X,Y).
 parent(X,Y):- father(X,Y).
 grandparent(X,Z):- parent(X,Y), parent(Y,Z).

Copyright © 2015 Pearson. All rights reserved. 30

Goal Statements

• For theorem proving, theorem is in form of
proposition that we want system to prove or
disprove – goal statement

• Same format as headless Horn
 man(fred)

• Conjunctive propositions and propositions
with variables also legal goals

 father(X, mike)

Copyright © 2015 Pearson. All rights reserved. 31

Inferencing Process of Prolog

• Queries are called goals
• If a goal is a compound proposition, each of the

facts is a subgoal
• To prove a goal is true, must find a chain of

inference rules and/or facts. For goal Q:
P2 :- P1
P3 :- P2
…
Q :- Pn

• Process of proving a subgoal called matching,
satisfying, or resolution

32

Example
» Goal: man(bob)

» If the following fact and inference rule is found
in the database:
» father(bob).
» man(X) :- father(X). —> instantiate X

temporarily to bob.
» The the goal is true

» Goal: man(X)
» match the goal against the propositions in the

database, and instantiate with the first object
found

Copyright © 2015 Pearson. All rights reserved. 33

Approaches

• Matching is the process of proving a proposition
• Proving a subgoal is called satisfying the subgoal
• Bottom-up resolution, forward chaining

– Begin with facts and rules of database and attempt to find
sequence that leads to goal

– Works well with a large set of possibly correct answers

• Top-down resolution, backward chaining
– Begin with goal and attempt to find sequence that leads

to set of facts in database
– Works well with a small set of possibly correct answers

• Prolog implementations use backward chaining

» Given this knowledge base:

1. If someone is a third year, then they need a job.

2. If someone is a third year, then they live in.
3. If someone needs a job, they will apply to be an accountant.

4. John is a third year

» Goal: Is there anyone who is going to become an accountant?
» The system begins by searching either for a fact that gives the answer

directly, or for a rule by which the answer could be inferred.
» There's one rule whose conclusion, if true, would supply an answer, and

that's rule 3.
» The system next checks the rule's conditions. Is there anyone who needs a

job? facts or rules?
» There are no facts, but rule 1 is relevant.

» So we now check its conditions. Is there a third year? This time, there is a
fact that answers this: John is a third year. So we've proved rule 1, and
that's proved rule 3, and that's answered the question.

Backward Chaining

35

Forward Chaining

» It is a repeated application of modus ponies
(if a conditional statement ‘if p then q’ is
accepted, and the consequent does not hold
‘not-q’ then the negation of the antecedent
‘not-p’ can be inferred.)

» Forward chaining is a popular
implementation strategy for expert systems,
business and production rule systems.

» Use knowledge base, and infer to produce
more data until a goal is reached.

Copyright © 2015 Pearson. All rights reserved. 36

Subgoal Strategies

• When goal has more than one subgoal, can
use either
– Depth-first search: find a complete proof for the
first subgoal before working on others

– Breadth-first search: work on all subgoals in
parallel

• Prolog uses depth-first search
– Can be done with fewer computer resources

Copyright © 2015 Pearson. All rights reserved. 37

Backtracking

• With a goal with multiple subgoals, if fail to
show truth of one of subgoals, reconsider
previous subgoal to find an alternative
solution: backtracking

• Begin search where previous search left off
• Can take lots of time and space because
may find all possible proofs to every
subgoal

38

Backtracking Example

» Goal: male(X), parent(X, shelley).
» Prolog finds the first fact in the database
with male as its functor.

» It then instantiates X to the parameter of
the found fact, say mike.

» Then, it attempts to prove that parent(mike,
shelley) is true.

» If it fails, it backtracks to the first subgoal,
male(X), and attempts to re-satisfy it with
some alternative instantiation of X.

what happens if you reverse
the order of the subgoals?

Copyright © 2015 Pearson. All rights reserved. 39

Simple Arithmetic

• Prolog supports integer variables and integer
arithmetic

• is operator: takes an arithmetic expression
as right operand and variable as left
operand

 A is B / 17 + C

• Not the same as an assignment statement!
– The following is illegal:

 Sum is Sum + Number.

Copyright © 2015 Pearson. All rights reserved. 40

Example
speed(ford,100).
speed(chevy,105).
speed(dodge,95).
speed(volvo,80).
time(ford,20).
time(chevy,21).
time(dodge,24).
time(volvo,24).
distance(X,Y) :- speed(X,Speed),
 time(X,Time),
 Y is Speed * Time.

A query: distance(chevy, Chevy_Distance).

2205

Copyright © 2015 Pearson. All rights reserved. 41

Trace

• Built-in structure that displays instantiations
at each step

• Tracing model of execution - four events:
– Call (beginning of attempt to satisfy goal)
– Exit (when a goal has been satisfied)
– Redo (when backtrack occurs)
– Fail (when goal fails)

Example

trace.
distance(chevy, Chevy_Distance).
(1) 1 Call: distance(chevy, _0)?
(2) 2 Call: speed(chevy, _5)?
(2) 2 Exit: speed(chevy, 105)
(3) 2 Call: time(chevy, _6)?
(3) 2 Exit: time(chevy, 21)
(4) 2 Call: _0 is 105*21?
(4) 2 Exit: 2205 is 105*21
(1) 1 Exit: distance(chevy, 2205)
Chevy_Distance = 2205 42

Copyright © 2015 Pearson. All rights reserved. 43

Example
likes(jake,chocolate).
likes(jake, apricots).
likes(darcie, licorice).
likes(darcie, apricots).

trace.
likes(jake, X), likes(darcie, X).
(1) 1 Call: likes(jake, _0)?
(1) 1 Exit: likes(jake, chocolate)
(2) 1 Call: likes(darcie, chocolate)?
(2) 1 Fail: likes(darcie, chocolate)
(1) 1 Redo: likes(jake, _0)?
(1) 1 Exit: likes(jake, apricots)
(3) 1 Call: likes(darcie, apricots)?
(3) 1 Exit: likes(darcie, apricots)
X = apricots

Copyright © 2015 Pearson. All rights reserved. 44

List Structures

• Other basic data structure (besides atomic propositions we
have already seen): list

• List is a sequence of any number of elements
• Elements can be atoms, atomic propositions, or other
terms (including other lists)

 [apple, prune, grape, kumquat]

 [] (empty list)
 [X | Y] (head X and tail Y)
new_list([apple, prune, grape, kumquat]). —> creates a list
new_list([apricot, peach, pear]) —> creates a list

Copyright © 2015 Pearson. All rights reserved. 45

Append Example

 append([], List, List).

 append([Head | List_1], List_2, [Head | List_3]) :-
 append (List_1, List_2, List_3).

The first proposition specifies that when the empty list is
appended to any other list, that other list is the result.
(recursion terminating condition)

The second means that appending the list [Head | List_1] to any
list List_2 produces the list [Head | List_3], but only if the
list List_3 is formed by appending List_1 to List_2. In LISP,
this would be:

(CONS (CAR FIRST) (APPEND (CDR FIRST) SECOND))

Prolog’s append is a predicate: it does not return a list, it
returns yes or no.

46

Append Example:

trace.
append([bob, jo], [jake, darcie], Family).
(1) 1 Call: append([bob, jo], [jake, darcie], _10)?
(2) 2 Call: append([jo], [jake, darcie], _18)?
(3) 3 Call: append([], [jake, darcie], _25)?
(3) 3 Exit: append([], [jake, darcie], [jake, darcie])
(2) 2 Exit: append([jo], [jake, darcie], [jo, jake,
 darcie])
(1) 1 Exit: append([bob, jo], [jake, darcie],
 [bob, jo, jake, darcie])
Family = [bob, jo, jake, darcie]
yes

47

Append Query Example

» append(X, Y, [a, b, c]).

» Determines what two lists can be appended
to get [a, b, c]

» Output:
X = []
Y = [a, b, c];
X = [a]
Y = [b, c];
X = [a, b]
Y = [c];
X = [a, b, c]
Y = []

Copyright © 2015 Pearson. All rights reserved. 48

More Examples

reverse([], []).
reverse([Head | Tail], List) :-
 reverse (Tail, Result),
 append (Result, [Head], List).

member(Element, [Element | _]).
member(Element, [_ | List]) :-
 member(Element, List).

 The underscore character means an anonymous variable—it
means we do not care what instantiation it might get from
unification

Copyright © 2015 Pearson. All rights reserved. 49

Deficiencies of Prolog
• Resolution order control

– In a pure logic programming environment, the order
of attempted matches is nondeterministic and all
matches would be attempted concurrently

• The closed-world assumption
– The only knowledge is what is in the database

• The negation problem
– Anything not stated in the database is assumed to
be false: not(not(some_goal)).

• Intrinsic limitations
– It is easy to state a sort process in logic, but
difficult to actually do—it doesn’t know how to sort

Copyright © 2015 Pearson. All rights reserved. 50

Applications of Logic Programming

• Relational database management systems
• Expert systems
• Natural language processing

Copyright © 2015 Pearson. All rights reserved. 51

Summary

• Symbolic logic provides basis for logic
programming

• Logic programs should be nonprocedural
• Prolog statements are facts, rules, or goals
• Resolution is the primary activity of a Prolog
interpreter

• Although there are a number of drawbacks
with the current state of logic programming it
has been used in a number of areas

