
Lecture 12: Hadoop Map Reduce  
 
Slides by: Instructor: Nalini Venkatasubramanian
Class: CS 237 Distributed Systems Middleware 

CC755: Distributed and Parallel
Systems

Dr. Manal Helal, Spring 2016
moodle.manalhelal.com

Introduction

1. Introduction: Hadoop’s history and
advantages

2. Architecture in detail

3. Hadoop in industry

What is Hadoop?

• Apache top level project, open-source
implementation of frameworks for reliable,
scalable, distributed computing and data
storage.

• It is a flexible and highly-available
architecture for large scale computation
and data processing on a network of
commodity hardware.

Brief History of Hadoop

• Designed to answer the question:
“How to process big data with
reasonable cost and time?”

Search engines in 1990s

1996

1996

1997

1996

Google search engines

1998

2013

Hadoop’s Developers

Doug Cutting

2005: Doug Cutting and Michael J. Cafarella developed
Hadoop to support distribution for the Nutch search
engine project.

The project was funded by Yahoo.

2006: Yahoo gave the project to Apache
Software Foundation.

Google Origins

2003

2004

2006

Some Hadoop Milestones

• 2008 - Hadoop Wins Terabyte Sort Benchmark (sorted 1 terabyte
of data in 209 seconds, compared to previous record of 297 seconds)

• 2009 - Avro and Chukwa became new members of Hadoop
Framework family

• 2010 - Hadoop's Hbase, Hive and Pig subprojects completed, adding
more computational power to Hadoop framework

• 2011 - ZooKeeper Completed
• 2013 - Hadoop 1.1.2 and Hadoop 2.0.3 alpha.
 - Ambari, Cassandra, Mahout have been added

What is Hadoop?

• Hadoop:

• an open-source software framework that supports data-
intensive distributed applications, licensed under the
Apache v2 license.

• Goals / Requirements:

• Abstract and facilitate the storage and processing of
large and/or rapidly growing data sets

• Structured and non-structured data
• Simple programming models

• High scalability and availability

• Use commodity (cheap!) hardware with little redundancy

• Fault-tolerance

• Move computation rather than data

Hadoop Framework Tools

Pig is a platform for analyzing large data sets that consists of a high-level language for expressing data analysis
programs,

Hive is a data warehouse software facilitates reading, writing, and managing large datasets residing in distributed
storage using SQL.

Sqoop is a tool designed for efficiently transferring bulk data between Apache Hadoop and structured datastores
such as relational databases.

Avro™ is a data serialization system.

ZooKeeper is a centralized service for
maintaining configuration information,
naming, providing distributed
synchronization, and providing group
services.

Flume is a distributed, reliable, and available service for efficiently collecting, aggregating, and
moving large amounts of log data.

Chukwa is an
open source data
collection
system for
monitoring large
distributed
systems

HBase is the
Hadoop
database, a
distributed,
scalable, big
data store.

Hadoop Installation &
Tutorials

Download From: http://hadoop.apache.org/releases.html
Single Node Setup: http://hadoop.apache.org/docs/current/hadoop-project-
dist/hadoop-common/SingleCluster.html
Cluster Setup: http://hadoop.apache.org/docs/current/hadoop-project-dist/
hadoop-common/ClusterSetup.html
Map-Reduce Tutorial: http://hadoop.apache.org/docs/current/hadoop-
mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html

Common Hadoop Shell Commands

hadoop fs –cat file:///file2
hadoop fs –mkdir /user/hadoop/dir1 /user/hadoop/dir2
hadoop fs –copyFromLocal <fromDir> <toDir>
hadoop fs –put <localfile> hdfs://nn.example.com/hadoop/

hadoopfile
sudo hadoop jar <jarFileName> <method> <fromDir>

<toDir>
hadoop fs –ls /user/hadoop/dir1

hadoop fs –cat hdfs://nn1.example.com/file1
hadoop fs –get /user/hadoop/file <localfile>

Tips
-- ‘sudo’ means ‘run as administrator’ (super user)
--some hadoop configurations use ‘hadoop dfs’ rather than ‘hadoop fs’ – file paths to hadoop differ for the
former, see the link included for more detail

Understanding MapReduce

▪ Map>>
□ (K1, V1) !

□ Info in
□ Input Split

□ list (K2, V2)
□ Key / Value out

(intermediate values)
□ One list per local

node
□ Can implement local

Reducer (or
Combiner)

▪ Reduce
□ (K2, list(V2) !

□ Shuffle / Sort phase
precedes Reduce
phase

□ Combines Map output
into a list

□ list (K3, V3)
□ Usually aggregates

intermediate values

(input) <k1, v1> ! map ! <k2, v2> ! combine ! <k2, v2> ! reduce ! <k3, v3> (output)

▪ Shuffle/Sort>>

Image from: http://blog.jteam.nl/wp-content/uploads/2009/08/MapReduceWordCountOverview1.png

MapReduce Example -
WordCount

Hadoop’s Architecture

• Distributed, with some centralization

• Main nodes of cluster are where most of the computational power
and storage of the system lies

• Main nodes run TaskTracker to accept and reply to MapReduce
tasks, and also DataNode to store needed blocks closely as
possible

• Central control node runs NameNode to keep track of HDFS
directories & files, and JobTracker to dispatch compute tasks to
TaskTracker

• Written in Java, also supports Python and Ruby

Ways to MapReduce

Libraries Languages

Note: Java is most common, but other languages can be used

Hadoop’s Architecture

Hadoop’s Architecture

• Hadoop Distributed Filesystem

• Tailored to needs of MapReduce

• Targeted towards many reads of filestreams

• Writes are more costly

• High degree of data replication (3x by default)

• No need for RAID on normal nodes

• Large blocksize (64MB)

• Location awareness of DataNodes in network

Hadoop’s Architecture

NameNode:

• Stores metadata for the files, like the directory structure of a
typical FS.

• The server holding the NameNode instance is quite crucial,
as there is only one.

• Transaction log for file deletes/adds, etc. Does not use
transactions for whole blocks or file-streams, only metadata.

• Handles creation of more replica blocks when necessary after
a DataNode failure

Hadoop’s Architecture

DataNode:

• Stores the actual data in HDFS

• Can run on any underlying filesystem (ext3/4, NTFS, etc)

• Notifies NameNode of what blocks it has

• NameNode replicates blocks 2x in local rack, 1x elsewhere

Hadoop’s Architecture: MapReduce Engine

Hadoop’s Architecture

MapReduce Engine:

• JobTracker & TaskTracker

• JobTracker splits up data into smaller tasks(“Map”) and sends
it to the TaskTracker process in each node

• TaskTracker reports back to the JobTracker node and reports
on job progress, sends data (“Reduce”) or requests new jobs

Hadoop’s Architecture

• None of these components are necessarily limited to using
HDFS

• Many other distributed file-systems with quite different
architectures work

• Many other software packages besides Hadoop's
MapReduce platform make use of HDFS

Hadoop in the Wild

• Hadoop is in use at most organizations that handle big data:
o Yahoo!
o Facebook
o Amazon
o Netflix
o Etc…

• Some examples of scale:
o Yahoo!’s Search Webmap runs on 10,000 core Linux

cluster and powers Yahoo! Web search

o FB’s Hadoop cluster hosts 100+ PB of data (July, 2012)
& growing at ½ PB/day (Nov, 2012)

Hadoop in the Wild

• Advertisement (Mining user behavior to generate
recommendations)

• Searches (group related documents)

• Security (search for uncommon patterns)

Three main applications of Hadoop:

Hadoop in the Wild

• Non-realtime large dataset computing:

o NY Times was dynamically generating PDFs of articles
from 1851-1922

o Wanted to pre-generate & statically serve articles to
improve performance

o Using Hadoop + MapReduce running on EC2 / S3,
converted 4TB of TIFFs into 11 million PDF articles in 24
hrs

Hadoop in the Wild: Facebook Messages

• Design requirements:

o Integrate display of email, SMS and
chat messages between pairs and
groups of users

o Strong control over who users
receive messages from

o Suited for production use between
500 million people immediately after
launch

o Stringent latency & uptime
requirements

Hadoop in the Wild

• System requirements

o High write throughput

o Cheap, elastic storage

o Low latency

o High consistency (within a
single data center good
enough)

o Disk-efficient sequential and
random read performance

Hadoop in the Wild

• Classic alternatives

o These requirements typically met using large MySQL cluster &
caching tiers using Memcached

o Content on HDFS could be loaded into MySQL or Memcached
if needed by web tier

• Problems with previous solutions

o MySQL has low random write throughput… BIG problem for
messaging!

o Difficult to scale MySQL clusters rapidly while maintaining
performance

o MySQL clusters have high management overhead, require
more expensive hardware

Hadoop in the Wild

• Facebook’s solution

o Hadoop + HBase as foundations

o Improve & adapt HDFS and HBase to scale to FB’s workload
and operational considerations

▪ Major concern was availability: NameNode is SPOF &
failover times are at least 20 minutes

▪ Proprietary “AvatarNode”: eliminates SPOF, makes HDFS
safe to deploy even with 24/7 uptime requirement

▪ Performance improvements for realtime workload: RPC
timeout. Rather fail fast and try a different DataNode

• Distributed File System
• Fault Tolerance
• Open Data Format
• Flexible Schema
• Queryable Database

Hadoop Highlights

Why use Hadoop?

• Need to process Multi Petabyte Datasets
• Data may not have strict schema
• Expensive to build reliability in each application
• Nodes fails everyday
• Need common infrastructure
• Very Large Distributed File System
• Assumes Commodity Hardware
• Optimized for Batch Processing
• Runs on heterogeneous OS

What types of business problems for Hadoop?

Source: Cloudera “Ten Common Hadoopable Problems”

Limitations of MapReduce

Comparing: RDBMS vs. Hadoop

Traditional RDBMS Hadoop / MapReduce

Data Size Gigabytes (Terabytes) Petabytes (Hexabytes)

Access Interactive and Batch Batch – NOT Interactive

Updates Read / Write many times Write once, Read many times

Structure Static Schema Dynamic Schema

Integrity High (ACID) Low

Scaling Nonlinear Linear

Query Response
Time

Can be near immediate Has latency (due to batch processing)

More about the
operations of each

process

DataNode

• A Block Sever
– Stores data in local file system
– Stores meta-data of a block - checksum
– Serves data and meta-data to clients

• Block Report
– Periodically sends a report of all existing blocks to

NameNode
• Facilitate Pipelining of Data

– Forwards data to other specified DataNodes

Block Placement

• Replication Strategy
– One replica on local node
– Second replica on a remote rack
– Third replica on same remote rack
– Additional replicas are randomly placed

• Clients read from nearest replica

Data Correctness

• Use Checksums to validate data – CRC32
• File Creation

– Client computes checksum per 512 byte
– DataNode stores the checksum

• File Access
– Client retrieves the data and checksum from

DataNode
– If validation fails, client tries other replicas

Data Pipelining

• Client retrieves a list of DataNodes on
which to place replicas of a block

• Client writes block to the first DataNode
• The first DataNode forwards the data to the

next DataNode in the Pipeline
• When all replicas are written, the client

moves on to write the next block in file

Hadoop MapReduce

• MapReduce programming model
– Framework for distributed processing of large

data sets
– Pluggable user code runs in generic

framework
• Common design pattern in data processing

– cat * | grep | sort | uniq -c | cat > file
– input | map | shuffle | reduce | output

MapReduce Usage

• Log processing
• Web search indexing
• Ad-hoc queries

Closer Look

• MapReduce Component
– JobClient
– JobTracker
– TaskTracker
– Child

• Job Creation/Execution Process

MapReduce Process (org.apache.hadoop.mapred)

• JobClient
– Submit job

• JobTracker
– Manage and schedule job, split job into tasks

• TaskTracker
– Start and monitor the task execution

• Child
– The process that really execute the task

Inter Process Communication 
IPC/RPC (org.apache.hadoop.ipc)

• Protocol
– JobClient <-------------> JobTracker

– TaskTracker <------------> JobTracker

– TaskTracker <-------------> Child
• JobTracker implements both protocol and works as server

in both IPC
• TaskTracker implements the TaskUmbilicalProtocol; Child

gets task information and reports task status through it.

JobSubmissionProtocol

InterTrackerProtocol

TaskUmbilicalProtocol

The Following Slides are for interfering
with the Hadoop echo system to

directly manage the splitting process
and the tasks management

For end user Examples, check the other slides and the
accompanying source code on moodle

JobClient.submitJob - 1

• Check input and output, e.g. check if the output
directory is already existing
– job.getInputFormat().validateInput(job);
– job.getOutputFormat().checkOutputSpecs(fs, job);

• Get InputSplits, sort, and write output to HDFS
– InputSplit[] splits = job.getInputFormat().

 getSplits(job, job.getNumMapTasks());
– writeSplitsFile(splits, out); // out is $SYSTEMDIR/

$JOBID/job.split

Hadoop divides the input file stored on HDFS into splits
(typically of the size of an HDFS block) and assigns
every split to a different mapper, trying to assign every
split to the mapper where the split physically resides

JobClient.submitJob - 2

• The jar file and configuration file will be
uploaded to HDFS system directory
– job.write(out); // out is $SYSTEMDIR/$JOBID/job.xml

• JobStatus status =
jobSubmitClient.submitJob(jobId);
– This is an RPC invocation, jobSubmitClient is

a proxy created in the initialization

Job initialization on JobTracker - 1

• JobTracker.submitJob(jobID) <-- receive
RPC invocation request

• JobInProgress job = new
JobInProgress(jobId, this, this.conf)

• Add the job into Job Queue
– jobs.put(job.getProfile().getJobId(), job);
– jobsByPriority.add(job);
– jobInitQueue.add(job);

Job initialization on JobTracker - 2

• Sort by priority
– resortPriority();
– compare the JobPrioity first, then compare the

JobSubmissionTime
• Wake JobInitThread

– jobInitQueue.notifyall();
– job = jobInitQueue.remove(0);
– job.initTasks();

JobInProgress - 1

• JobInProgress(String jobid, JobTracker
jobtracker, JobConf default_conf);

• JobInProgress.initTasks()
– DataInputStream splitFile = fs.open(new

Path(conf.get(“mapred.job.split.file”)));
 // mapred.job.split.file --> $SYSTEMDIR/
$JOBID/job.split

JobInProgress - 2

• splits = JobClient.readSplitFile(splitFile);
• numMapTasks = splits.length;
• maps[i] = new TaskInProgress(jobId,

jobFile, splits[i], jobtracker, conf, this, i);
• reduces[i] = new TaskInProgress(jobId,

jobFile, splits[i], jobtracker, conf, this, i);
• JobStatus --> JobStatus.RUNNING

JobTracker Task Scheduling - 1

• Task getNewTaskForTaskTracker(String
taskTracker)

• Compute the maximum tasks that can be
running on taskTracker
– int maxCurrentMap Tasks =

tts.getMaxMapTasks();
– int maxMapLoad =

Math.min(maxCurrentMapTasks,
(int)Math.ceil(double) remainingMapLoad/
numTaskTrackers));

JobTracker Task Scheduling - 2

• int numMaps = tts.countMapTasks(); //
running tasks number

• If numMaps < maxMapLoad, then more
tasks can be allocated, then based on
priority, pick the first job from the
jobsByPriority Queue, create a task, and
return to TaskTracker
– Task t = job.obtainNewMapTask(tts,

numTaskTrackers);

Start TaskTracker - 1

• initialize()
– Remove original local directory
– RPC initialization

• TaskReportServer = RPC.getServer(this,
bindAddress, tmpPort, max, false, this, fConf);

• InterTrackerProtocol jobClient =
(InterTrackerProtocol)
RPC.waitForProxy(InterTrackerProtocol.class,
InterTrackerProtocol.versionID, jobTrackAddr,
this.fConf);

Start TaskTracker - 2

• run();
• offerService();
• TaskTracker talks to JobTracker with

HeartBeat message periodically
– HeatbeatResponse heartbeatResponse =

transmitHeartBeat();

Run Task on TaskTracker - 1
• TaskTracker.localizeJob(TaskInProgress tip);
• launchTasksForJob(tip, new

JobConf(rjob.jobFile));
– tip.launchTask(); // TaskTracker.TaskInProgress
– tip.localizeTask(task); // create folder, symbol link
– runner = task.createRunner(TaskTracker.this);
– runner.start(); // start TaskRunner thread

Run Task on TaskTracker - 2• TaskRunner.run();
– Configure child process’ jvm parameters, i.e.

classpath, taskid, taskReportServer’s address
& port

– Start Child Process
• runChild(wrappedCommand, workDir, taskid);

Child.main()

• Create RPC Proxy, and execute RPC
invocation
– TaskUmbilicalProtocol umbilical =

(TaskUmbilicalProtocol)
RPC.getProxy(TaskUmbilicalProtocol.class,
TaskUmbilicalProtocol.versionID, address,
defaultConf);

– Task task = umbilical.getTask(taskid);
• task.run(); // mapTask / reduceTask.run

Finish Job - 1

• Child
– task.done(umbilical);

• RPC call: umbilical.done(taskId,
shouldBePromoted)

• TaskTracker
– done(taskId, shouldPromote)

• TaskInProgress tip = tasks.get(taskid);
• tip.reportDone(shouldPromote);

– taskStatus.setRunState(TaskStatus.State.SUCCEEDED)

Finish Job - 2

• JobTracker
– TaskStatus report: status.getTaskReports();
– TaskInProgress tip = taskidToTIPMap.get(taskId);
– JobInProgress update JobStatus

• tip.getJob().updateTaskStatus(tip, report, myMetrics);
– One task of current job is finished
– completedTask(tip, taskStatus, metrics);
– If (this.status.getRunState() == JobStatus.RUNNING &&

allDone) {this.status.setRunState(JobStatus.SUCCEEDED)}

Demo

• Word Count
– hadoop jar hadoop-0.20.2-examples.jar

wordcount <input dir> <output dir>
• Hive

– hive -f pagerank.hive

