
Lecture 10: Programming Using the Message Passing Paradigm II  
 
 
Slides by: Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar

To accompany the text “Introduction to Parallel Computing”, Addison Wesley, 2003.
With some edits from other sources  

CC755: Distributed and Parallel
Systems

Dr. Manal Helal, Spring 2016
moodle.manalhelal.com

Topic Overview

• Topologies and Embedding
• Overlapping Communication with Computation
• Collective Communication and Computation Operations
• Groups and Communicators

Communicators

• A communicator defines a communication domain - a set
of processes that are allowed to communicate with each
other.

• Information about communication domains is stored in
variables of type MPI_Comm.

• Communicators are used as arguments to all message
transfer MPI routines.

• A process can belong to many different (possibly
overlapping) communication domains.

• MPI defines a default communicator called
MPI_COMM_WORLD which includes all the processes.

Avoiding Deadlocks

Consider:

int a[10], b[10], myrank;
MPI_Status status;
...
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
if (myrank == 0) {
 MPI_Send(a, 10, MPI_INT, 1, 1, MPI_COMM_WORLD);
 MPI_Send(b, 10, MPI_INT, 1, 2, MPI_COMM_WORLD);
}
else if (myrank == 1) {
 MPI_Recv(b, 10, MPI_INT, 0, 2, MPI_COMM_WORLD);
 MPI_Recv(a, 10, MPI_INT, 0, 1, MPI_COMM_WORLD);
}
...

If MPI_Send is blocking, there is a deadlock.

Avoiding Deadlocks
Consider the following piece of code, in which process i

sends a message to process i + 1 (modulo the number of
processes) and receives a message from process i - 1

(module the number of processes).

int a[10], b[10], npes, myrank;
MPI_Status status;
...
MPI_Comm_size(MPI_COMM_WORLD, &npes);
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
MPI_Send(a, 10, MPI_INT, (myrank+1)%npes, 1,
 MPI_COMM_WORLD);
MPI_Recv(b, 10, MPI_INT, (myrank-1+npes)%npes, 1,
MPI_COMM_WORLD);
...

Once again, we have a deadlock if MPI_Send is blocking.

Avoiding Deadlocks
We can break the circular wait to avoid deadlocks as follows:

int a[10], b[10], npes, myrank;
MPI_Status status;
...
MPI_Comm_size(MPI_COMM_WORLD, &npes);
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
if (myrank%2 == 1) {
 MPI_Send(a, 10, MPI_INT, (myrank+1)%npes, 1,
 MPI_COMM_WORLD);
 MPI_Recv(b, 10, MPI_INT, (myrank-1+npes)%npes, 1,
 MPI_COMM_WORLD);
}
else {
 MPI_Recv(b, 10, MPI_INT, (myrank-1+npes)%npes, 1,
 MPI_COMM_WORLD);
 MPI_Send(a, 10, MPI_INT, (myrank+1)%npes, 1,
 MPI_COMM_WORLD);
}
...

Sending and Receiving  
Messages Simultaneously

To exchange messages, MPI provides the following function:

 int MPI_Sendrecv(void *sendbuf, int sendcount,
 MPI_Datatype senddatatype, int dest, int
 sendtag, void *recvbuf, int recvcount,
 MPI_Datatype recvdatatype, int source, int recvtag,
 MPI_Comm comm, MPI_Status *status)

The arguments include arguments to the send and receive
functions. If we wish to use the same buffer for both send and
receive, we can use:

 int MPI_Sendrecv_replace(void *buf, int count,
 MPI_Datatype datatype, int dest, int sendtag,
 int source, int recvtag, MPI_Comm comm,
 MPI_Status *status)

Topologies and Embeddings

• MPI allows a programmer to organise processors into
logical k-d meshes.

• The processor ids in MPI_COMM_WORLD can be mapped
to other communicators (corresponding to higher-
dimensional meshes) in many ways.

• The goodness of any such mapping is determined by the
interaction pattern of the underlying program and the
topology of the machine.

• MPI does not provide the programmer any control over
these mappings.

Topologies and Embeddings

Different ways to map a set of processes to a two-dimensional
grid. (a) and (b) show a row- and column-wise mapping of these
processes, (c) shows a mapping that follows a space-filling curve

(dotted line), and (d) shows a mapping in which neighbouring
processes are directly connected in a hypercube.

Creating and Using  
Cartesian Topologies

• We can create cartesian topologies using the function:
 int MPI_Cart_create(MPI_Comm comm_old, int ndims,
 int *dims, int *periods, int

reorder, MPI_Comm *comm_cart)

 This function takes the processes in the old
communicator and creates a new communicator with
dims dimensions.

• Each processor can now be identified in this new
cartesian topology by a vector of dimension dims.

Creating and Using  
Cartesian Topologies

• Since sending and receiving messages still require (one-
dimensional) ranks, MPI provides routines to convert
ranks to cartesian coordinates and vice-versa.
int MPI_Cart_coord(MPI_Comm comm_cart, int rank, int maxdims,

 int *coords)
int MPI_Cart_rank(MPI_Comm comm_cart, int *coords, int *rank)

• The most common operation on cartesian topologies is a
shift. To determine the rank of source and destination of
such shifts, MPI provides the following function:
int MPI_Cart_shift(MPI_Comm comm_cart, int dir, int s_step,

 int *rank_source, int *rank_dest)

Overlapping Communication  
with Computation

• In order to overlap communication with computation, MPI provides a
pair of functions for performing non-blocking send and receive
operations.
int MPI_Isend(void *buf, int count, MPI_Datatype datatype,
 int dest, int tag, MPI_Comm comm,
 MPI_Request *request)
int MPI_Irecv(void *buf, int count, MPI_Datatype datatype,
 int source, int tag, MPI_Comm comm,
 MPI_Request *request)

• These operations return before the operations have been completed.
Function MPI_Test tests whether or not the non-blocking send or
receive operation identified by its request has finished.
int MPI_Test(MPI_Request *request, int *flag,
 MPI_Status *status)

• MPI_Wait waits for the operation to complete.
int MPI_Wait(MPI_Request *request, MPI_Status *status)

Avoiding Deadlocks
 Using non-blocking operations remove most deadlocks. Consider:

int a[10], b[10], myrank;
MPI_Status status;
...
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
if (myrank == 0) {
 MPI_Send(a, 10, MPI_INT, 1, 1, MPI_COMM_WORLD);
 MPI_Send(b, 10, MPI_INT, 1, 2, MPI_COMM_WORLD);
}
else if (myrank == 1) {
 MPI_Recv(b, 10, MPI_INT, 0, 2, &status, MPI_COMM_WORLD);

MPI_Recv(a, 10, MPI_INT, 0, 1, &status, MPI_COMM_WORLD);
}
...

Replacing either the send or the receive operations with non-blocking
counterparts fixes this deadlock.

Collective Communication and
Computation Operations

• MPI provides an extensive set of functions for performing
common collective communication operations.

• Each of these operations is defined over a group
corresponding to the communicator.

• All processors in a communicator must call these
operations.

Collective Communication Operations

• The barrier synchronisation operation is performed in MPI
using:
 int MPI_Barrier(MPI_Comm comm)

 The one-to-all broadcast operation is:
 int MPI_Bcast(void *buf, int count, MPI_Datatype datatype,

 int source, MPI_Comm comm)

• The all-to-one reduction operation is:
 int MPI_Reduce(void *sendbuf, void *recvbuf, int count,

 MPI_Datatype datatype, MPI_Op op, int target,
 MPI_Comm comm)

Predefined Reduction Operations
Operation Meaning Datatypes
MPI_MAX Maximum C integers and floating point
MPI_MIN Minimum C integers and floating point
MPI_SUM Sum C integers and floating point
MPI_PROD Product C integers and floating point
MPI_LAND Logical AND C integers
MPI_BAND Bit-wise AND C integers and byte
MPI_LOR Logical OR C integers
MPI_BOR Bit-wise OR C integers and byte
MPI_LXOR Logical XOR C integers
MPI_BXOR Bit-wise XOR C integers and byte
MPI_MAXLOC max-min value-location Data-pairs
MPI_MINLOC min-min value-location Data-pairs

Collective Communication Operations
• The operation MPI_MAXLOC combines pairs of values (vi, li) and returns the

pair (v, l) such that v is the maximum among all vi 's and l is the corresponding
li (if there are more than one, it is the smallest among all these li 's).

• MPI_MINLOC does the same, except for minimum value of vi.

An example use of the MPI_MINLOC and MPI_MAXLOC operators.

Collective Communication Operations

MPI datatypes for data-pairs used with the MPI_MAXLOC
and MPI_MINLOC reduction operations.

MPI Datatype C Datatype
MPI_2INT pair of ints

MPI_SHORT_INT short and int
MPI_LONG_INT long and int
MPI_LONG_DOUBLE_INT long double and int
MPI_FLOAT_INT float and int
MPI_DOUBLE_INT double and int

Collective Communication Operations

• If the result of the reduction operation is needed by all
processes, MPI provides:
 int MPI_Allreduce(void *sendbuf, void *recvbuf,

int count, MPI_Datatype datatype,
MPI_Op op, MPI_Comm comm)

• To compute prefix-sums, MPI provides:
 int MPI_Scan(void *sendbuf, void *recvbuf, int

 count,MPI_Datatype datatype, MPI_Op op,
 MPI_Comm comm)

Collective Communication Operations

• The gather operation is performed in MPI using:
 int MPI_Gather(void *sendbuf, int sendcount,
 MPI_Datatype senddatatype, void *recvbuf,
 int recvcount, MPI_Datatype recvdatatype,
 int target, MPI_Comm comm)

• MPI also provides the MPI_Allgather function in which the data are
gathered at all the processes.
 int MPI_Allgather(void *sendbuf, int sendcount,

 MPI_Datatype senddatatype, void *recvbuf,
 int recvcount, MPI_Datatype recvdatatype,
 MPI_Comm comm)

• The corresponding scatter operation is:
 int MPI_Scatter(void *sendbuf, int sendcount,
 MPI_Datatype senddatatype, void *recvbuf,
 int recvcount, MPI_Datatype recvdatatype,
 int source, MPI_Comm comm)

Collective Communication Operations

• The all-to-all personalized communication operation is
performed by:
 int MPI_Alltoall(void *sendbuf, int sendcount,

MPI_Datatype senddatatype, void *recvbuf, int
recvcount, MPI_Datatype recvdatatype,
MPI_Comm comm)

• Using this core set of collective operations, a number of
programs can be greatly simplified.

Groups and Communicators

• In many parallel algorithms, communication operations
need to be restricted to certain subsets of processes.

• MPI provides mechanisms for partitioning the group of
processes that belong to a communicator into subgroups
each corresponding to a different communicator.

• The simplest such mechanism is:
 int MPI_Comm_split(MPI_Comm comm, int color, int

key, MPI_Comm *newcomm)

• This operation groups processors by color and sorts
resulting groups on the key.

Groups and Communicators

Using MPI_Comm_split to split a group of processes in
a communicator into subgroups.

Groups and Communicators

• In many parallel algorithms, processes are arranged in a virtual grid,
and in different steps of the algorithm, communication needs to be
restricted to a different subset of the grid.

• MPI provides a convenient way to partition a Cartesian topology to
form lower-dimensional grids:
 int MPI_Cart_sub(MPI_Comm comm_cart, int *keep_dims,

 MPI_Comm *comm_subcart)

• If keep_dims[i] is true (non-zero value in C) then the ith dimension
is retained in the new sub-topology.

• The coordinate of a process in a sub-topology created by
MPI_Cart_sub can be obtained from its coordinate in the original
topology by disregarding the coordinates that correspond to the
dimensions that were not retained.

Groups and Communicators

Splitting a Cartesian topology of size 2 x 4 x 7 into (a) four
subgroups of size 2 x 1 x 7, and (b) eight subgroups of size

1 x 1 x 7.

