
COM2031 Advanced Algorithms, Autumn Semester 2019 

Lab 7: Max Flow Min Cut – the Ford-Fulkerson algorithm 

Purpose of the lab 

This lab asks you to implement the Ford-Fulkerson algorithm introduced in this week’s lecture to 
compute the maximum flow through a graph. 
 
 
Ford-Fulkerson algorithm 
 
The pseudocode for the algorithm was given in the lecture as follows: 
 
Ford-Fulkerson(G, s, t, c) { 
   foreach e Î E:  f(e) ¬ 0 
   Gf ¬ residual graph 
   while (there exists augmenting path P) { 
      f ¬ Augment(f, c, P) 
      update Gf 
   } 
   return f 
} 
 
Augment(f, c, P) { 
   b ¬ bottleneck(P)  
   foreach e Î P { 
      if (e Î E) f(e) ¬ f(e) + b 
      else       f(eR) ¬ f(e) - b 
   } 
   return f 
} 
 
The following site allows you to explore this algorithm: 
 
https://www-m9.ma.tum.de/graph-algorithms/flow-ford-fulkerson/index_en.html 

For this problem we have a directed graph where each edge has a capacity.  We also have two 
distinguished nodes: a source node and a sink node.   
 
A graph is given as a set of Vertices V (these are the nodes) and Edges E, where each edge e Î E has 
a capacity c(e).  
 
There are various Graph Data structures that were covered in last year’s COM1029 course. The 
choice of data structure will affect your implementation. 
 
Given the set of vertices V we can number them from 0 to N-1 with 0 as the source node and N-1 as 
the sink node, with all the other nodes labelled from 1 to N-2. 
 



Then we can represent the graph as a 2-D array G, where every edge e from i to j with capacity c(e) 
will correspond to G[i][j] having the value c(e).  If there is no edge from i to j then G[i][j] will have the 
value 0. 
 
Exercise 1:  Draw the graph corresponding to the following array: 

G 0 1 2 3 4 
0 0 9 2 0 0 

1 0 0 5 3 0 

2 0 0 0 2 4 

3 0 0 0 0 6 

4 0 0 0 0 0 
 
Can you see what the minimum cut and maximum flow will be for this graph? 
 
Use the site https://www-m9.ma.tum.de/graph-algorithms/flow-ford-fulkerson/index_en.html to 
model this graph and to work out the maximum flow. 

Implementation 
 
A flow f can also be represented as a 2-D array f, where the entries correspond to the flow along the 
edges.  Each entry for f must be less than or equal to the capacity given in the graph G. 
 
Question:  Given a graph G and a flow f how can you compute the residual graph G’ ? 
 
[hint: if an edge e from i to j has capacity c(e) and flow f(e) then the residual graph has the remaining 
capacity c(e)-f(e) for that edge from i to j, and has capacity f(e) for the reverse edge from j to i. ] 
 
Main Task: Implement the Ford-Fulkerson Algorithm given above, by completing the Java 
file Graph_maxflow_mincut.java (i.e. fill in the TODOs). 
 
Use 2-D arrays to represent the graph, the residual graph, and the flow.   
 
Think about how to find an augmenting path, and how to represent it 
[hint; use Breadth First Search to find the shortest augmenting path] 
 
To do this you will need to implement all of the elements of the algorithm: 

• Initialise the residual graph to be the original graph 
• Initialise the flow to be 0 on all edges 

 
Repeat the following until no augmenting path remains: 
• Find an augmenting path in the residual graph 
• Update the flow with the flow along the augmenting path 
• Update the residual graph to account for the updated flow 

 
• When no augmenting path remains then return the flow: this is the maximal flow 

 
Run your algorithm on Example 1 above.  Do you get the result you worked out earlier? 


