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COM2031 Advanced Algorithms, Autumn Semester 2019 

Graph Data Structures and Operations Revision 
 
Graphs are read from various file formats, or databases to be represented in memory using various 
Graph data structures. The first section of this document discusses various data structures, then 
some common applications to graph modelling. Two Java classes accompanies this document for 
educational purposes. Graph class is a template class that represent a graph of (V) generic type 
vertices, in which V is a generic type that can be any class type declared. You will see examples of 
this V being a String class and being a City user defined class in the DisplayGraphs class. 
The DisplayGraphs class contain the main method that reads various graphs examples using 
different file formats and different data structures. The graphTests method in the 
DisplayGraphs class perform some graph operations on the passed graph object as defined 
from the different graph example methods and print to the console the output. There is also a 
MinHeap class that implements Heap data structures used in the Dijkstra algorithm implementation 
in the Graph class using adjacency lists in the dijkstra_al method. 
 
A current limitation on the DisplayGraphs class is that the generic type V will need to have X 
and Y coordinates to generate the frame visualisation. Further abstractions can be provided in the 
future that does not limit that the data type such as what is discussed in the graph visualisation 
section.  
 
Graph Visualisation: 
Some graphs of the examples presented can be displayed in a frame because they are defined using 
the City user defined class that has X and Y coordinate such as in the US cities example. The UK 
Cities example cities were assigned X and Y coordinate incrementally using the nextPoint method 
presented in the first lab of this module. Further aesthetic choices of the grid points to assign to 
vertices can be applied using graph visualisation packages such as graphViz Java wrapper: 
 
https://github.com/nidi3/graphviz-java 
 
GraphViz is an open source library that contain various graph drawing tools such as the following: 

• The dot tool draws various directed graphs in "hierarchical" or layered drawings. 
• neato draws undirected graphs using a ‘‘spring’’ model 
• twopi draws graphs using a radial layout 
• circo draws graphs using a circular layout 
• fdp and sfdp draws undirected graphs using a ‘‘spring’’ model, but sfdp uses a multi-scale 

approach to produce layouts of large graphs in a reasonably short time. 
• patchwork draws the graph as a squarified treemap. 
• osage draws the graph using its cluster structure. 

 
https://www.graphviz.org 
 
Large Graphs 

The test examples are generally small graphs except the movie’s performers contain 3466 verteces 
of 100 movies and 3366 performer forming a bipartite graph. You will also find csv files for 1260 
movies, and 4188 movies for your own testing. It might be interesting to take this further in your 
COM2039 module for parallel and distributed experimentation, or your graduation projects. 
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Graph Data Structures 

Given a graph G = (V, E), as illustrated in the figure, we will explore the data structures to represent 
with pros and cons. 

 
Figure 1: A graph can be used to model the flights between the cities 

The data structure to represent graphs are either linked lists, arrays or matrix structures. In concrete 
applications the best structure is often a combination of these all. List structures are often preferred 
for sparse graphs as they have smaller memory requirements. Matrix structures on the other hand 
provide faster access for some applications but can consume huge amounts of memory.  

List/Arrays structures include the incidence list, which is an array of pairs of vertices, and the 
adjacency list, which separately lists the neighbors of each vertex: Much like the incidence list, each 
vertex has a list of which vertices it is adjacent to. 

Matrix structures include the incidence matrix, a matrix of 0's and 1's whose rows represent vertices 
and whose columns represent edges, and the adjacency matrix, in which both the rows and columns 
are indexed by vertices. In both cases a 1 indicates two adjacent objects and a 0 indicates two non-
adjacent objects. For weighted graphs, 1 for the existence of an edge can be replaced by the weight 
of an edge. For the directed graph adjacency matrix, a convention need to be defined as whether to 
consider the row as the source node and the column as the destination node or otherwise. For the 
directed graph incidence matrix, the convention can be that Bi,j = −1 if the edge ej leaves vertex vi, 1 
if it enters vertex vi and 0 otherwise (many authors use the opposite sign convention). 

Other representations include the Laplacian matrix as a modified form of the adjacency matrix that 
incorporates information about the degrees of the vertices. Also, the distance matrix, like the 
adjacency matrix, has both its rows and columns indexed by vertices, but rather than containing 
specific edge information in each cell, it contains the length of a shortest path between two vertices. 

Below are some example implementations for the graph in Figure 1. 

 
1.1 Vertices as List of Objects, each containing its neighbours Lists  

 
From COM1029 you studied adjacency list by creating a data structures of vertices that contain 
edges list embedded in it.  In your node/vertex data structure, you can add any attribute of interest. 
If it is a city, you can add population, geographic coordinates, country … etc. If it is a person, you can 
add date of birth, city of birth … etc. Edges as well can be attributed with more than just the 
direction and the cost. It the edge represents a road, it can be attributed with date road established, 
services along the road … etc. 
 
public class Node { 

public String name ; // Node name 
public List <Edge > adj; // Adjacent vertices 
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public Node ( String nm){ 
name = nm; 
adj = new LinkedList <Edge >(); 

} 
} 
 
public class Edge implements Comparable <Edge > { 

public Node source ; // First vertex in Edge – if directed, 
otherwise, just first and second node 
public Node dest ; // Second vertex in Edge 
public double cost ; // Edge cost, if weighted, otherwise you 
can ignore this field 
public Edge ( Node s, Node d, double c){ 

source = s; 
dest = d; 
cost = c; 

} 
} 
 
To represent the graph in Figure 1 provided I overload the constructor to take name only for now:  
 
Node city0 = new Node ("Seattle"); 
Node city1 = new Node ("San Francisco"); 
Edge e1 = new Edge (city0, city1, 0); // since this is not a 
weighted nor directed graph, the order of the cities in the 
parameters does not matter, and zero for the cost for now. 
 
Node city3 = new Node ("Denver "); 
 
Node city5 = new Node ("Chicago"); 
 
Edge e2 = new Edge (city0, city3, 0); 
Edge e3 = new Edge (city0, city5, 0); 
Edge[] city0Neighbours = {e1, e2, e3}; 
 
city0.adj = city0Neighbours; 
 
 
... 
Node city11 = new Node ("Houston", 2099451, "Annise Parker"); 
Node [] vertices = {city0, city1, ... , city11}; 
 
Notice that the same edge will be represented twice, as a neighbour to source, and as a neighbour 
to destination, and how long it takes to define a graph.  
 

1.2 Vertices & Edges Lists of Objects: 
Adjacency independent Lists is similar to list of objects, but instead of having the Edge list as 
neighbours encapsulated in the node/vertex data structure, Edge List can be an independent list of 
objects, such that a given edge is represented once. For example to represent the graph in Figure 1, 
instead of using Node, we will use String array for vertices and linked list for all neighbours: 
 
String [] V = {"Seattle", "San Francisco", "Los Angeles", 
"Denver", "Kansas City", "Chicago", "Boston", "New York", 
"Atlanta", "Miami", "Dallas", "Houston"}; 
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java.util.LinkedList[] neighbors = new java.util.LinkedList[12]; 
 
neighbors[0] contains all vertices pointed from vertex 0 via directed edges, neighbors[1] contains all 
vertices pointed from vertex 1 via directed edges, and so on. The graph in Figure 1 is represented as 
shown in as shown in Figure 2. Wendy does not point to any vertex, so neighbors[4] is null. 
 

 
Figure 2: Edges in the graph in Figure 1 are represented using linked lists 

You cannot make edge lists in such a representation weighted or attributed, unless it becomes a 
linked list of objects. 

1.3 Vertices & Edge Incidence Lists/Arrays: 
 
Using a class to create node objects as in the first data structure, we can also represent edges as 
incidence list of Edge 2D arrays rather than linked list, as first dimension is the number of edges, and 
the second dimension is 2 to identify the 2 vertices incident on the edge. For example define a City 
class and create array of objects rather than list of objects, and edges are 2D array as in the example 
below. This can be directed or undirected based on how you process it. However, it cannot be 
weighted or further attributed, unless it is a 2D array of objects and not of integer values. 
 
City city0 = new City("Seattle", 608660, "Mike McGinn"); 
... 
City city11 = new City("Houston", 2099451, "Annise Parker"); 
City[] vertices = {city0, city1, ... , city11}; 
 
int[][] edges = { 
{0, 1}, {0, 3}, {0, 5}, 
{1, 0}, {1, 2}, {1, 3}, 
{2, 1}, {2, 3}, {2, 4}, {2, 10}, 
{3, 0}, {3, 1}, {3, 2}, {3, 4}, {3, 5}, 
{4, 2}, {4, 3}, {4, 5}, {4, 7}, {4, 8}, {4, 10}, 
{5, 0}, {5, 3}, {5, 4}, {5, 6}, {5, 7}, 
{6, 5}, {6, 7}, 
{7, 4}, {7, 5}, {7, 6}, {7, 8}, 
{8, 4}, {8, 7}, {8, 9}, {8, 10}, {8, 11}, 
{9, 8}, {9, 11}, 
{10, 2}, {10, 4}, {10, 8}, {10, 11}, 
{11, 8}, {11, 9}, {11, 10} 
}; 
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1.4 Adjacency Matrix: 

 
 
Assume that the graph has n vertices defined as above, you can use a two-dimensional matrix, say 
adjacencyMatrix, to represent the edges. Each element in the array is 0 or 1. adjacencyMatrix[i][j] is 
1 if there is an edge from vertex i to vertex j; otherwise, adjacencyMatrix[i][j] is 0. Otherwise, it can 
have a value to represent a weighted graph. If the graph is undirected, the matrix is symmetric, 
because adjacencyMatrix[i][j] is the same as adjacencyMatrix[j][i]. For example, the edges in the 
graph in Figure 1 can be represented using an adjacency matrix as follows: 
 
int[][] adjacencyMatrix = { 
{ , 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0}, // Seattle 
{1, , 1, 1, 0, 0, 0, 0, 0, 0, 0, 0}, // San Francisco 
{0, 1, , 1, 1, 1, 0, 0, 0, 0, 0, 0}, // Los Angeles 
{1, 1, 1, , 1, 1, 0, 0, 0, 0, 0, 0}, // Denver 
{0, 0, 1, 1, , 1, 0, 1, 1, 0, 1, 0}, // Kansas City 
{1, 0, 0, 1, 1, , 1, 1, 0, 0, 0, 0}, // Chicago 
{0, 0, 0, 0, 0, 1, , 1, 0, 0, 0, 0}, // Boston 
{0, 0, 0, 0, 1, 1, 1, , 1, 0, 0, 0}, // New York 
{0, 0, 0, 1, 1, 0, 0, 1, , 1, 1, 1}, // Atlanta 
{0, 0, 0, 0, 0, 0, 0, 0, 1, , 0, 1}, // Miami 
{0, 0, 1, 0, 1, 0, 0, 0, 1, 0, , 1}, // Dallas 
{0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, } // Houston 
}; 
 
 
 
Basic Graph Operations: 

 
Graph Declaration: Various constructors are implemented to read from one data structure and 
generate the others. You can implement and remove what is not useful to your problem at hand. 
Other methods to define the graph incrementally are Add/Remove/Update Vertex, and 
Add/Remove/Update Edge. Only the addVertex and the addEdge methods are implemented 
currently. clear method is also implemented to clear the memory allocated for all defined data 
structures. 
 
Graph Properties: 

• Degree: getDegree is a method to return the degree (number of edges incident on it, and 
if directed, there is an outdegree and indegree that can be defined seperately). 

• Cycles: Detecting the cycles is implemented in isCyclic method. Finding the Cycles in 
implemented in the recursive methods: getACycle that searches for a cycle from a given 
vertex. The method returns a List that contains all the vertices in a cycle starting from u. If 
the graph doesn’t have any cycles, the method returns null. 

• Connected Components: getConnectedComponents is a method that returns a List of 
Lists of vertices that are connected in different components. 

 
Graph Traversal:  
 
BFS is breadth first search starting from one vertex in the graph as a root of the generated tree, then 
all its adjacent vertices, then all the vertices adjacent to those vertices, and so on until all vertices 
are visited. 
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DFS is depth first search starting from one vertex in the graph as a root, then recursively visits the 
subtrees of the root, keeping track of visited vertices to avoid infinite cycles. 
 
Applications of BFS include: 

• Testing whether a graph is bipartite. (A graph is bipartite if the vertices of the graph can be 
divided into two disjoint sets such that no edges exist between vertices in the same set.)  
 

Applications of the DFS include: 
•  Finding a Hamiltonian path/cycle. A Hamiltonian path in a graph is a path that visits each 

vertex in the graph exactly once. A Hamiltonian cycle visits each vertex in the graph exactly 
once and returns to the starting vertex. 

 
Applications of BFS or DFS include: 

• Detecting whether a graph is connected. A graph is connected if there is a path between any 
two vertices in the graph. Search the graph starting from any vertex. If the number of 
vertices searched is the same as the number of vertices in the graph, the graph is connected. 
Otherwise, the graph is not connected 

• Finding all connected components. A connected component is a maximal connected 
subgraph in which every pair of vertices are connected by a path. 

• Detecting whether there is a path between two vertices. 
• Finding the shortest path between two vertices. You can prove that the path between the 

root and any node in the BFS tree is the shortest path between the root and the node.  
• Detecting whether there is a cycle in the graph  
• Finding a cycle in the graph  

 
You will find examples of BFS and DFS methods in the Graph class. 
 
Minimum spanning tree: In COM1029, you were provided with the Prim’s and Kruskal’s algorithms 
for constructing a minimal spanning tree for a given graph. You will find example of Prim’s using 
adjacency lists in the prims_al method and another using adjacency matrix in the prims_am 
method in the Graph class. You will also find an example of Kruskal’s algorithm using adjacency 
matrix in the kruskal_am method, and another greedy algorithm using adjacency lists in the 
Kruskal_greedy method. Testing showed that the Prims implementation using adjacency matrix 
does not work with bipartite graphs because the limitation of edges’ count in the minimum spanning 
tree to be the vertices count -1 does not hold. Also, the Kruskal algorithm using adjacency matrix is 
not efficient for big graphs. 
 
Path Finding: There are various approaches to find path between 2 nodes without optimising the 
search to shortest path. A getPath is implemented in the Graph template using BFS traversal, 
and getPath_dfs using DFS traversal. The method returns a List<Integer> that contains all the 
vertices in a path from u to v in this order. Using the BFS approach, you can obtain the shortest path 
from u to v. If there isn’t a path from u to v, the method returns null. 
 
Shortest Path: In COM1029 you studied Dijkstra’s algorithm for shortest paths between all nodes 
and a source node. You will find two implementations in the template class using adjacency matrices 
in the dijkstra_am method and another using adjacency lists in the dijkstra_al method.  
 
Network flow: Max flow min cut theorem template is provided in a simplified template 
Graph_mincut_maxflow class using adjacency matrix. Fill in the required TODO method as 
explained in the lab sheet. Sample solution will be provided next week. 
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Other problems include: 

• Graph Enumeration: describes a class of combinatorial enumeration problems in which one 
must count undirected or directed graphs of certain types, typically as a function of the 
number of vertices of the graph. 

• Subgraph Isomorphism: finding a fixed graph as a subgraph in a given graph, for example 
finding the largest complete subgraph is called the clique problem (NP-complete). 

• Finding induced subgraphs in a given graph, for example: Finding the largest edgeless 
induced subgraph or independent set is called the independent set problem (NP-complete). 

• Graph colouring: colouring a graph so that no two adjacent vertices have the same colour, 
or with other similar restrictions. Or colouring edges such that no two coincident edges are 
the same colour), or other variations. 

• Visibility problems:  Museum guard problem 
• Decomposition problems: decompose a graph into subgraphs isomorphic to a fixed graph; 

for instance, decomposing a complete graph into Hamiltonian cycles.  
 
 


