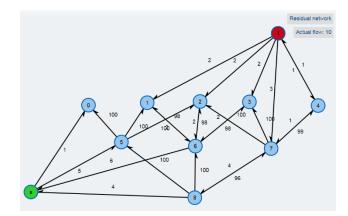

COM2031 Advanced Algorithms, Autumn Semester 2019


Lab 10: Open Pit Mining: More Applications of Network Flow Solutions

Question 1: What are the optimal blocks to mine in the following example?

1	- 2	- 2	- 2	- 2
	5	6	- 3	
		4		

1	-2	-2	-2	-2
	5	6	-3	
		4		

The minimum cut is identified as:

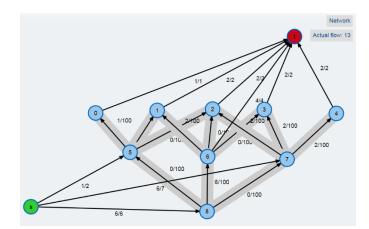
S to 8

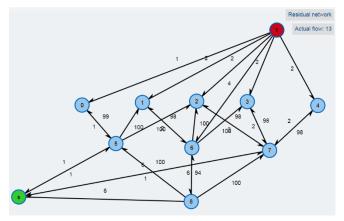
1 to t

2 to t

3 to t

Bricks to excavate are (1, 5, 2, 3, 6, 0) for net value: 6


This means 8 is not taken (worth 4), but require dependency of -3 and -2, which is


-5 cost, which makes sense that we avoided a loss of -1.

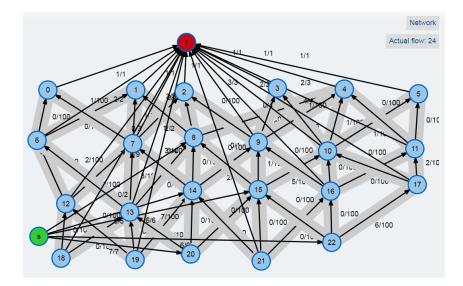
Question 2: What are the best blocks to mine in the following example?

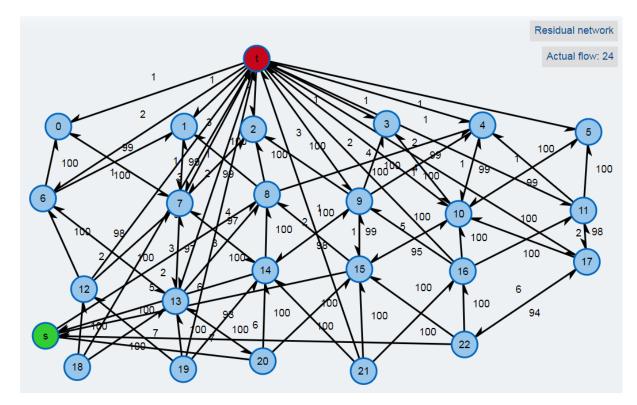
- 1	- 2	- 2	- 2	- 2
	2	- 4	7	
		6		

-1	-2	-2	-2	-2
	2	-4	7	
		6		

The minimum cut is identified as:

- 0 to t
- 1 to t
- 2 to t
- 3 to t
- 4 to t
- 6 to t


Bricks to excavate are (0, 5, 1, 2, 7, 3, 4, 8, 6) for net value: 2


This means all of them are taken because obviously the highest values are 7 and 6 and at the bottom, so it makes sense.

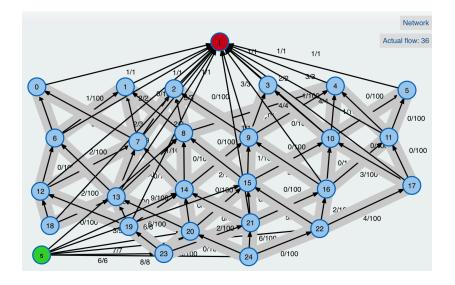
Question 3: What is the optimal mine in the following example?

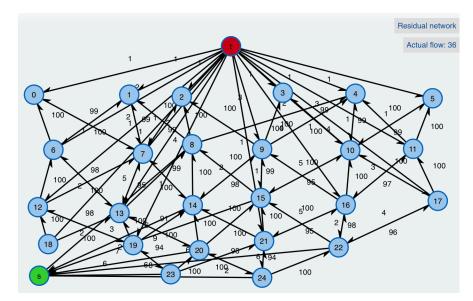
-1	-1	-1	-1	-1	-1
-2	-3	2	-3	-2	-3
-3	-2	5	6	-4	-4
-9	-4	7	-1	6	

-1	-1	-1	-1	-1	-1
-2	-3	2	-3	-2	-3
-3	-2	5	6	-4	-4
-9	-4	7	-1	6	

The minimum cut is identified as:

1 - 22 2 - t 3 - t 4 - t 5 - t 6 - t 7 - t 8 - t 9 - t 11 - t 12 - t 15 - t


Bricks to excavate are (0, 6, 1, 8, 2, 3, 4, 9, 5, 10, 13, 7, 14, 15, 20) for net value: 2


This also makes sense, because all positive blocks that are omitted will require dependency of higher cost of negative values.

Question 4: What is the optimal mine in the following example – the same as the previous question except with two additional blocks in the fifth layer down?

-1	-1	-1	-1	-1	-1
-2	-3	2	-3	-2	-3
-3	-2	5	6	-4	-4
-9	-4	7	-1	6	
		6	8		•

-1	-1	-1	-1	-1	-1
-2	-3	2	-3	-2	-3
-3	-2	5	6	-4	-4
-9	-4	7	-1	6	
		6	8		

The min-cut is defined to be:

s – 23 0 – t 1 – t 2 – t 3 – t 4 – t 5 – t 6 – t 7 – t 9 – t 10 – t 11 – t 13 – t 16 – t 17 – t 21 – t

Selected Projects/Blocks are: (0, 6, 1, 8, 2, 3, 4, 9, 5, 10, 13, 7, 14, 15, 11, 16, 20, 21, 22, 17, 24) for net value: 4

This also makes sense, because all positive blocks that are omitted will require dependency of higher cost of negative values.