
Manal Helal

Operating Systems
2019-20
Week 6: Deadlock

COM1032

Week 6 Objectives

» To develop a description of deadlocks, which prevent sets of concurrent processes from completing
their tasks

» To present a number of different methods for preventing or avoiding deadlocks in a computer system

• Deadlock Prevention

• Deadlock Avoidance

• Deadlock Detection

• Recovery from Deadlock

Operating System Concepts – 8th Edition
Silberschatz, Galvin and Gagne ©2010

“When two trains approach each other at a crossing, both shall come to a full stop and
neither shall start up again until the other has gone.” Kansas legislature early in the
20th century

» The permanent blocking of a set of processes that either compete
for system resources or communicate with each other

» A set of processes is deadlocked when each process in the set is
blocked awaiting an event that can only be triggered by another
blocked process in the set

» Permanent because none of the events is ever triggered

»No efficient solution in the general case

»Deadlocks can occur via system calls, locking, etc.

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Deadlock Definition

See mutex deadlock example in the slides notes

Resource Categories

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Reusable

• Can be safely used by only one process at a
time and is not depleted by that use
• Processors, I/O channels, main and

secondary memory, devices, and data
structures such as files, databases, and
semaphores

Consumable

• One that can be created (produced) and
destroyed (consumed)
• Interrupts, signals, messages, and

information
• In I/O buffers

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

What happens if interleaving execution order is: p0 p1 q0 q1 p2 q2?

Example 2:
Memory Request

» Space is available for allocation of 200Kbytes, and the following
sequence of events occur:

» Deadlock occurs if both processes progress to their second request

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

P1
. . .

. . .
Request 80 Kbytes;

Request 60 Kbytes;

P2
. . .

. . .
Request 70 Kbytes;

Request 80 Kbytes;

Consumable Resources Deadlock

» Consider a pair of processes, in which each process attempts to receive a message
from the other process and then send a message to the other process:

» Deadlock occurs if the Receive is blocking

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Deadlock Characterization

» Mutual exclusion: only one process at a time can use a resource

» Hold and wait: a process holding at least one resource is waiting to acquire additional resources
held by other processes

» No preemption: a resource can be released only voluntarily by the process holding it, after that
process has completed its task

» Circular wait: there exists a set {P0, P1, …, Pn} of waiting processes such that P0 is waiting for a
resource that is held by P1, P1 is waiting for a resource that is held by P2, …, Pn–1 is waiting for a
resource that is held by Pn, and Pn is waiting for a resource that is held by P0.

Deadlock can arise if four conditions hold simultaneously:

Operating System Concepts – 8th Edition
Silberschatz, Galvin and Gagne ©2010

Conditions for Deadlock

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Mutual
Exclusion

• Only one
process may
use a
resource at
a time

• No process
may access
a resource
until that has
been
allocated to
another
process

Hold-and-Wait

• A process
may hold
allocated
resources
while
awaiting
assignment
of other
resources

No Pre-emption

• No resource
can be
forcibly
removed
from a
process
holding it

Circular Wait

• A closed
chain of
processes
exists, such
that each
process
holds at
least one
resource
needed by
the next
process in
the chain

Deadlock Approaches

» There is no single effective strategy that can deal with all types of deadlock

» Three approaches are common:

» Deadlock avoidance

• Do not grant a resource request if this allocation might lead to deadlock

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

» Deadlock detection

• Grant resource requests when possible,
but periodically check for the presence
of deadlock and take action to recover

» Deadlock prevention

• Disallow one of the three
necessary conditions for
deadlock occurrence, or
prevent circular wait
condition from happening

Resource-Allocation Graph

» V is partitioned into two types:

• P = {P1, P2, …, Pn}, the set consisting of all the processes in the system

• R = {R1, R2, …, Rm}, the set consisting of all resource types in the system

» request edge – directed edge Pi → Rj

» assignment edge – directed edge Rj → Pi

A set of vertices V and a set of edges E.

Operating System Concepts – 8th Edition
Silberschatz, Galvin and Gagne ©2010

Resource-Allocation Graph (Cont.)

» Process

» Resource Type with 4 instances

» Pi requests instance of Rj

» Pi is holding an instance of Rj Pi

Pi

Rj

Rj

Operating System Concepts – 8th Edition
Silberschatz, Galvin and Gagne ©2010

Example of a Resource Allocation Graph

Operating System Concepts – 8th Edition
Silberschatz, Galvin and Gagne ©2010

Figure 7.1 Resource-allocation graph.

Resource Allocation Graph With A Deadlock

Operating System Concepts – 8th Edition
Silberschatz, Galvin and Gagne ©2010

Figure 7.2 Resource-allocation graph with a deadlock.

Graph With A Cycle But No Deadlock

Operating System Concepts – 8th Edition
Silberschatz, Galvin and Gagne ©2010

Figure 7.3 Resource-allocation graph with a cycle but no deadlock.

P1

P1

P2

Rb

Ra

Ra

R
eq

ues
ts

Req
ues

ts

H
eld by

H
eld by

(c) Circular wait

(a) Resouce is requested

P1 P2

Rb

Ra

R
eq

ues
ts

Req
ues

ts

H
eld by

H
eld by

(d) No deadlock

P1 Ra

(b) Resource is held

Figure 6.5 Examples of Resource Allocation Graphs

Requests Held by

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Basic Facts

» If graph contains no cycles ⇒ no deadlock

» If graph contains a cycle ⇒

• if only one instance per resource type, then deadlock

• if several instances per resource type, possibility of deadlock

Operating System Concepts – 8th Edition
Silberschatz, Galvin and Gagne ©2010

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

P1

Ra

P2

Rb

P3

Rc

P4

Rd

Figure 6.6 Resource Allocation Graph for Figure 6.1b

Figure 6.1 Illustration of Deadlock

Deadlock Prevention Strategy

» Design a system in such a way that the possibility of deadlock is excluded

» Two main methods:
• Indirect

• Prevent the occurrence of one of the three necessary conditions

• Direct
• Prevent the occurrence of a circular wait

» We can allow the system to enter a deadlocked state, detect it, and recover.

» We can ignore the problem altogether and pretend that deadlocks never occur in the
system.

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Deadlock Condition Prevention

» Mutual exclusion
• If access to a resource requires mutual exclusion, then mutual exclusion must be supported by

the OS

• Some resources, such as files, may allow multiple accesses for reads but only exclusive access
for writes

• Even in this case, deadlock can occur if more than one process requires write permission

» Hold and wait
• Can be prevented by requiring that a process request all of its required resources at one time and

blocking the process until all requests can be granted simultaneously

© 2017 Pearson Education, Inc.,, NJ. All rights reserved. Hoboken

Deadlock Condition Prevention

» No Preemption
• If a process holding certain resources is denied a further request, that process must release its

original resources and request them again

• OS may preempt the second process and require it to release its resources

» Circular Wait
• The circular wait condition can be prevented by defining a linear ordering of resource types

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Deadlock Avoidance

» Allows the three necessary conditions but makes judicious choices to assure that the
deadlock point is never reached

» A decision is made dynamically whether the current resource allocation request will, if
granted, potentially lead to a deadlock

» Requires knowledge of future process requests

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Deadlock Example

/* thread one runs in this function */

void *do_work_one(void *param)
{

pthread_mutex_lock(&first_mutex);

pthread_mutex_lock(&second_mutex);

/** * Do some work */
pthread_mutex_unlock(&second_mutex);

pthread_mutex_unlock(&first_mutex);

pthread_exit(0);

}

/* thread two runs in this function */

void *do_work_two(void *param)
{

pthread_mutex_lock(&second_mutex);

pthread_mutex_lock(&first_mutex);

/** * Do some work */
pthread_mutex_unlock(&first_mutex);

pthread_mutex_unlock(&second_mutex);

pthread_exit(0);

}

Operating System Concepts – 8th Edition
Silberschatz, Galvin and Gagne ©2010

Deadlock Example with Lock Ordering

void transaction(Account from, Account to, double amount)

{

mutex lock1, lock2;

lock1 = get_lock(from);

lock2 = get_lock(to);

acquire(lock1);

acquire(lock2);

withdraw(from, amount);

deposit(to, amount);

release(lock2);

release(lock1);

}

Transactions 1 and 2 execute concurrently. Transaction 1 transfers $25
from account A to account B, and Transaction 2 transfers $50 from account
B to account A

Operating System Concepts – 8th Edition
Silberschatz, Galvin and Gagne ©2010

Two Approaches to Deadlock Avoidance

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Deadlock Avoidance Advantages

» It is not necessary to preempt and rollback processes, as in deadlock detection

» It is less restrictive than deadlock prevention

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Deadlock Avoidance Restrictions

• Maximum resource requirement for each process must be stated
in advance

• Processes under consideration must be independent and with no
synchronization requirements

• There must be a fixed number of resources to allocate

• No process may exit while holding resources

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Deadlock Strategies

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Deadlock prevention strategies are very
conservative

• Limit access to resources by imposing restrictions
on processes

Deadlock detection strategies do the
opposite

• Resource requests are granted whenever possible

Deadlock Avoidance

» Simplest and most useful model requires that each process declare the maximum number of
resources of each type that it may need

» The deadlock-avoidance algorithm dynamically examines the resource-allocation state to ensure
that there can never be a circular-wait condition

» Resource-allocation state is defined by the number of available and allocated resources, and the
maximum demands of the processes

Requires that the system has some additional a priori information
available

Operating System Concepts – 8th Edition
Silberschatz, Galvin and Gagne ©2010

Safe State

» When a process requests an available resource, system must decide if immediate allocation leaves
the system in a safe state

» System is in safe state if there exists a sequence <P1, P2, …, Pn> of ALL the processes in the
systems such that for each Pi, the resources that Pi can still request can be satisfied by currently
available resources + resources held by all the Pj, with j < i

» That is:

• If Pi resource needs are not immediately available, then Pi can wait until all Pj have finished

• When Pj is finished, Pi can obtain needed resources, execute, return allocated resources, and terminate

• When Pi terminates, Pi +1 can obtain its needed resources, and so on

Operating System Concepts – 8th Edition
Silberschatz, Galvin and Gagne ©2010

Basic Facts

» If a system is in safe state ⇒ no deadlocks

» If a system is in unsafe state ⇒ possibility of deadlock

» Avoidance ⇒ ensure that a system will never enter an unsafe state.

Operating System Concepts – 8th Edition
Silberschatz, Galvin and Gagne ©2010

Safe, Unsafe, Deadlock State

Operating System Concepts – 8th Edition
Silberschatz, Galvin and Gagne ©2010

Figure 7.8 Safe, unsafe, and deadlocked state spaces.

Check Example in the slides notes and in the lab 6 sheet

Avoidance Algorithms

» Single instance of a resource type

• Use a resource-allocation graph

» Multiple instances of a resource type

• Use the banker’s algorithm

Operating System Concepts – 8th Edition
Silberschatz, Galvin and Gagne ©2010

Resource-Allocation Graph Scheme

» Claim edge Pi → Rj indicated that process Pj may request resource Rj; represented by a dashed line

» Claim edge converts to request edge when a process requests a resource

» Request edge converted to an assignment edge when the resource is allocated to the process

» When a resource is released by a process, assignment edge reconverts to a claim edge

» Resources must be claimed a priori in the system

Operating System Concepts – 8th Edition
Silberschatz, Galvin and Gagne ©2010

Resource-Allocation Graph

Operating System Concepts – 8th Edition
Silberschatz, Galvin and Gagne ©2010

Unsafe State In Resource-Allocation Graph

Operating System Concepts – 8th Edition
Silberschatz, Galvin and Gagne ©2010

Resource-Allocation Graph Algorithm

» Suppose that process Pi requests a resource Rj

» The request can be granted only if converting the request edge to an assignment edge does not
result in the formation of a cycle in the resource allocation graph

Operating System Concepts – 8th Edition
Silberschatz, Galvin and Gagne ©2010

Banker’s Algorithm

» Multiple instances

» Each process must a priori claim maximum use

» When a process requests a resource it may have to wait

» When a process gets all its resources it must return them in a finite amount of time

Operating System Concepts – 8th Edition
Silberschatz, Galvin and Gagne ©2010

Data Structures for the Banker’s Algorithm

» Available: Vector of length m. If available [j] = k, there are k instances of resource type Rj available

» Max: n x m matrix. If Max [i,j] = k, then process Pi may request at most k instances of resource type
Rj

» Allocation: n x m matrix. If Allocation[i,j] = k then Pi is currently allocated k instances of Rj

» Need: n x m matrix. If Need[i,j] = k, then Pi may need k more instances of Rj to complete its task

Need [i,j] = Max[i,j] – Allocation [i,j]

Let n = number of processes, and m = number of resources types.

Operating System Concepts – 8th Edition
Silberschatz, Galvin and Gagne ©2010

Safety Algorithm

1.Let Work and Finish be vectors of length m and n, respectively. Initialize:
Work = Available

Finish [i] = false for i = 0, 1, …, n- 1

2.Find an i such that both:

(a) Finish [i] = false

(b) Needi ≤≤≤≤ Work

If no such i exists, go to step 4

3. Work = Work + Allocationi

Finish[i] = true
go to step 2

4.If Finish [i] == true for all i, then the system is in a safe state

Operating System Concepts – 8th Edition
Silberschatz, Galvin and Gagne ©2010

Resource-Request Algorithm for Process Pi

Requesti = request vector for process Pi. If Requesti [j] = k then process Pi wants k instances of
resource type Rj

1. If Requesti ≤≤≤≤ Needi go to step 2. Otherwise, raise error condition, since process has exceeded its
maximum claim

2. If Requesti ≤≤≤≤ Available, go to step 3. Otherwise Pi must wait, since resources are not available

3. Pretend to allocate requested resources to Pi by modifying the state as follows:
Available = Available – Requesti;

Allocationi = Allocationi + Requesti;

Needi = Needi – Requesti;

� If safe ⇒ the resources are allocated to Pi

� If unsafe ⇒ Pi must wait, and the old resource-allocation state is restored

Operating System Concepts – 8th Edition
Silberschatz, Galvin and Gagne ©2010

Example of Banker’s Algorithm

» 5 processes P0 through P4;

3 resource types:

A (10 instances), B (5instances), and C (7 instances)

» Snapshot at time T0:

Allocation Max Available

A B C A B C A B C

P0 0 1 0 7 5 3 3 3 2

P1 2 0 0 3 2 2

P2 3 0 2 9 0 2

P3 2 1 1 2 2 2

P4 0 0 2 4 3 3

Operating System Concepts – 8th Edition
Silberschatz, Galvin and Gagne ©2010

Example (Cont.)

» The content of the matrix Need is defined to be Max – Allocation

Need

A B C

P0 7 4 3

P1 1 2 2

P2 6 0 0

P3 0 1 1

P4 4 3 1

» The system is in a safe state since the sequence < P1, P3, P4, P2, P0> satisfies safety criteria

Operating System Concepts – 8th Edition
Silberschatz, Galvin and Gagne ©2010

Example: P1 Request (1,0,2)

» Check that Request ≤ Available (that is, (1,0,2) ≤ (3,3,2) ⇒ true

Allocation Need Available

A B C A B C A B C

P0 0 1 0 7 4 3 2 3 0

P1 3 0 2 0 2 0

P2 3 0 2 6 0 0

P3 2 1 1 0 1 1

P4 0 0 2 4 3 1

» Executing safety algorithm shows that sequence < P1, P3, P4, P0, P2> satisfies safety requirement

» Can request for (3,3,0) by P4 be granted?

» Can request for (0,2,0) by P0 be granted?

Operating System Concepts – 8th Edition
Silberschatz, Galvin and Gagne ©2010

Deadlock Detection

» Allow system to enter deadlock state

» Detection algorithm

» Recovery scheme

Operating System Concepts – 8th Edition
Silberschatz, Galvin and Gagne ©2010

Single Instance of Each Resource Type

» Maintain wait-for graph

• Nodes are processes

• Pi →→→→ Pj if Pi is waiting for Pj

» Periodically invoke an algorithm that searches for a cycle in the graph. If there is a cycle, there exists
a deadlock

» An algorithm to detect a cycle in a graph requires an order of n2 operations, where n is the number of
vertices in the graph

Operating System Concepts – 8th Edition
Silberschatz, Galvin and Gagne ©2010

Resource-Allocation Graph and Wait-for Graph

Resource-Allocation Graph Corresponding wait-for graph

Operating System Concepts – 8th Edition
Silberschatz, Galvin and Gagne ©2010

Several Instances of a Resource Type

» Available: A vector of length m indicates the number of available resources of each type

» Allocation: An n x m matrix defines the number of resources of each type currently allocated to
each process

» Request: An n x m matrix indicates the current request of each process. If Request [i][j] = k, then
process Pi is requesting k more instances of resource type Rj.

Operating System Concepts – 8th Edition
Silberschatz, Galvin and Gagne ©2010

Detection Algorithm

1.Let Work and Finish be vectors of length m and n, respectively Initialize:

(a) Work = Available

(b) For i = 1,2, …, n, if Allocationi ≠≠≠≠ 0, then
Finish[i] = false; otherwise, Finish[i] = true

2.Find an index i such that both:

(a) Finish[i] == false

(b) Requesti ≤≤≤≤ Work

If no such i exists, go to step 4

Operating System Concepts – 8th Edition
Silberschatz, Galvin and Gagne ©2010

Detection Algorithm (Cont.)

3.Work = Work + Allocationi

Finish[i] = true
go to step 2

4.If Finish[i] == false, for some i, 1 ≤ i ≤ n, then the system is in deadlock state. Moreover, if Finish[i]
== false, then Pi is deadlocked

Algorithm requires an order of O(m x n2) operations to detect
whether the system is in deadlocked state

Operating System Concepts – 8th Edition
Silberschatz, Galvin and Gagne ©2010

Example of Detection Algorithm

» Five processes P0 through P4; three resource types
A (7 instances), B (2 instances), and C (6 instances)

» Snapshot at time T0:

Allocation Request Available

A B C A B C A B C

P0 0 1 0 0 0 0 0 0 0

P1 2 0 0 2 0 2

P2 3 0 3 0 0 0

P3 2 1 1 1 0 0

P4 0 0 2 0 0 2

» Sequence <P0, P2, P3, P1, P4> will result in Finish[i] = true for all i

Operating System Concepts – 8th Edition
Silberschatz, Galvin and Gagne ©2010

Example (Cont.)

» P2 requests an additional instance of type C

Request

A B C

P0 0 0 0

P1 2 0 2

P2 0 0 1

P3 1 0 0

P4 0 0 2

» State of system?

• Can reclaim resources held by process P0, but insufficient resources to fulfill other processes; requests

• Deadlock exists, consisting of processes P1, P2, P3, and P4

Operating System Concepts – 8th Edition
Silberschatz, Galvin and Gagne ©2010

Detection-Algorithm Usage

» When, and how often, to invoke depends on:

• How often a deadlock is likely to occur?

• How many processes will need to be rolled back?

• one for each disjoint cycle

» If detection algorithm is invoked arbitrarily, there may be many cycles in the resource graph and so
we would not be able to tell which of the many deadlocked processes “caused” the deadlock.

Operating System Concepts – 8th Edition
Silberschatz, Galvin and Gagne ©2010

Recovery Strategies

» In order of increasing sophistication:
• Abort all deadlocked processes

• Back up each deadlocked process to some previously defined checkpoint and restart all
processes

• Successively abort deadlocked processes until deadlock no longer exists

• Successively preempt resources until deadlock no longer exists

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Recovery from Deadlock: Process Termination

» Abort all deadlocked processes

» Abort one process at a time until the deadlock cycle is eliminated

» In which order should we choose to abort?

1. Priority of the process

2. How long process has computed, and how much longer to completion

3. Resources the process has used

4. Resources process needs to complete

5. How many processes will need to be terminated

6. Is process interactive or batch?

Operating System Concepts – 8th Edition
Silberschatz, Galvin and Gagne ©2010

Recovery from Deadlock: Resource Preemption

» Selecting a victim – minimize cost

» Rollback – return to some safe state, restart process for that state

» Starvation – same process may always be picked as victim, include number of rollback in cost factor

Operating System Concepts – 8th Edition
Silberschatz, Galvin and Gagne ©2010

Dining Philosophers Problem

» No two philosophers can use
the same fork at the same
time (mutual exclusion)

» No philosopher must starve to
death (avoid deadlock and
starvation)

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

P3

Figure 6.11 Dining Arrangement for Philosophers

P0

P2

P4

P1

/* program diningphilosophers */

semaphore fork [5] = {1};
int i;
void philosopher (int i)
{

 while (true) {
 think();

 wait (fork[i]);

 wait (fork [(i+1) mod 5]);

 eat();

 signal(fork [(i+1) mod 5]);
 signal(fork[i]);

 }

}
void main()
{
 parbegin (philosopher (0), philosopher (1), philosopher

(2),

 philosopher (3), philosopher (4));

 }

Figure 6.12 A First Solution to the Dining Philosophers Problem that
could lead to deadlock

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

monitor dining_controller;
cond ForkReady[5]; /* condition variable for synchronization */

boolean fork[5] = {true}; /* availability status of each fork */

void get_forks(int pid) /* pid is the philosopher id number */

{

 int left = pid;
 int right = (++pid) % 5;
 /*grant the left fork*/

 if (!fork[left])
 cwait(ForkReady[left]); /* queue on condition variable */

 fork[left] = false;

 /*grant the right fork*/

 if (!fork[right])
 cwait(ForkReady[right]); /* queue on condition variable */

 fork[right] = false:

}

void release_forks(int pid)
{

 int left = pid;
 int right = (++pid) % 5;
 /*release the left fork*/

 if (empty(ForkReady[left]) /*no one is waiting for this fork */

 fork[left] = true;

 else /* awaken a process waiting on this fork */
 csignal(ForkReady[left]);

 /*release the right fork*/

 if (empty(ForkReady[right]) /*no one is waiting for this fork */

 fork[right] = true;

 else /* awaken a process waiting on this fork */

 csignal(ForkReady[right]);

}

void philosopher[k=0 to 4] /* the five philosopher clients */

{

 while (true) {

 <think>;

 get_forks(k); /* client requests two forks via monitor */

 <eat spaghetti>;

 release_forks(k); /* client releases forks via the monitor */

 }

}

Figure 6.14

A Solution

to the

Dining

Philosophers

Problem

Using a

Monitor

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

61

