
Dr Manal Helal © – February 2020 – COM1032 Operating Systems – Surrey University 1

COM1032 Operating Systems
Lab 3

OS Process Scheduling and Communication

Purpose:
The purpose of this lab session is to familiarize yourself with Operating System Process
Scheduling Algorithms in general using a simulator, Linux/Raspbian Scheduling algorithms
particularly, and familiarize yourself with some process communication protocols.

Aim
By the end of the lab you will be able to:

• Differentiate the different process scheduling algorithms and their performance.
• Monitor process scheduling in Raspberry Pi and control programmatically using delays

commands.
• Identify Java Process Communication APIs.

Process Scheduling Simulator

Download	from	SurreyLearn	in	week	3	lab	section	the	process	scheduling	simulator	(pss.jar).	
The	simulator	takes	an	input	file	describing	the	processes	to	add	to	the	ready	queue,	and	
simulate	their	running	using	the	selected	scheduling	algorithms,	and	generate	some	
performance	metrics	and	charts.	You	are	required	to	configure	the	input	file	based	on	your	URN	
numbers	and	run	your	own	simulations.	Try	to	understand	the	resulting	chart	for	each	
algorithm	explaining	the	resulting	performance	based	on	your	understanding	of	the	input	
configuration	parameters	and	the	selected	algorithm.	These	scheduling	algorithms	are	as	
follows:	

• -	First	come	first	serve	(FCFS)	
• -	Shortest	job	first	(SJF)	
• -	Round	robin	(RR)	
• -	Highest	Priority	First	static	priority,	preemptive	(HPFSP)	
• -	Weighted	round	robin	(WRR)	

The	format	of	the	input	file	is	as	follows:	

1. First	two	lines	are	for	you	to	write	comments		
2. Third	line	is	the	number	of	processes,	we	will	identify	as	x.	Configure	your	simulation	to	

run	for	8	processes.		
3. For	every	process	from	the	first	to	x,	include	a	line	in	the	input	file.	This	file	format	

require	each	line	to	contain	the	following	items	separated	by	spaces:		
a. Serial	number	for	the	process	beginning	from	1	up	to	x	in	the	last	line.		

Dr Manal Helal © – February 2020 – COM1032 Operating Systems – Surrey University 2

b. The	time	the	process	arrived	at	the	ready	queue	with	accuracy	up	to	one	digit	
after	the	decimal	point.	This	would	be	a.b.	We	can	use	the	following	values	for	
the	8	processes:	6.2,	2.4,	8.5,	9.7,	1.2,	4.5,	7.4,	and	5.8	for	the	last	process.	

c. The	time	the	process	is	expected	to	run	for	(CPU	Burst):	y.	For	this	simulation,	
we	will	consider	the	following	values,	60,	20,	40,	10,	90,	80,	30,	and	50	for	the	
last	process.	

d. The	process	priority	p,	For	this	simulation,	we	will	consider	the	following	values,	
8,	6,	2,	5,	7,	4,	3,	and	9	for	the	last	process.	

4. From	the	GUI	screen	choose	your	quantum	value	q,	such	as	10.	

Hints: The graph shows the number of processes on the y-axis. The timeline of the processor
is shown in the x-axis. A horizontal line in the graph is the set of points from the time the
process is scheduled (added to the ready queue), to the time it is either terminated or
interrupted. Each of these lines are horizontal in the graph and corresponding to the process
number and represent a visualisation for the time the process is running in the processor.
Try to understand the performance that you simulated. Focus on examples of the process
turnaround time for some algorithms and check if you can manually calculate the resulted
average turnaround time for the algorithm and the total order of execution. Try to manually
visualise what would have changed if half of your processes blocked for I/O once during their
execution giving an example of any order. For the 8 processes, if the first 4 processes stopped
for I/O half-way through their execution, how the average turn-around time and final order of
execution will change?
PSS generates three text files in the output folder grouped in subfolders named after the
algorithm abbreviated name. The first file is just an output of the configuration parameters.
This file can help you verify that you configured your input file and initial values of the
context switching and quantum correctly. The second file is a log of all state transitions
occurred to every process. The third results file is where the performance metrics are
calculated. It shows the timing every process started on the processor, and the time it
finished, and hence calculates the turnaround time as the arrival time subtracted from the
finish time. The weighted turnaround time for every process is its turnaround time divided by
the expected run time (CPU Burst) that you defined in the input file as y. The average
turnaround time is the total turnaround time for all processes divided by the number of
processes. Same about average weighted turnaround time is the total for all processes divided
by the number of processes.

Process Scheduling in Raspbian OS
From the command line you can list the running processes as you did in Week 1 lab to avoid
kernel mode code such as the one included in the second lecture. The ps (short for process
status) command is used to list processes currently running on your Raspbian system. It can
accept a lot of options that can come in handy when troubleshooting your system. Check
these options using man ps. For example: ps -A lists all processes, ps aux1 to list all processes
along with the username of the process′s owner, CPU loads, the starting time of the process,
the command that initiated the process, etc.

1 ps aux options are: a for all, u for user friendly output, and u for including processes not started from a user
terminal.

Dr Manal Helal © – February 2020 – COM1032 Operating Systems – Surrey University 3

Here is a description of each column:

USER – the user who owns the process (the user pi in this case).
PID – process ID of the process (2570).
%CPU – the CPU time used divided by the time the process has been running.
%MEM – the ratio of the process’s resident set size to the physical memory on the machine.
VSZ – virtual memory usage of entire process (in KiB).
RSS – resident set size, the non-swapped physical memory that a task has used (in KiB).
TTY – controlling tty (terminal).
STAT – multi-character process state.
START – starting time or date of the process.
TIME – cumulative CPU time.
COMMAND – the command used to start the process (tail -f /var/log/messages).

The Linux kernel exposes some process metadata as part of a virtual file system. Let’s look in
the /proc directory on your Linux system:

cd /proc
ls

You should see a list of directories, many of which will have names that are integers. Each
integer corresponds to a pid, and the files inside these pid directories capture information
about the relevant process. For the full list of the content of these directories, execute man 5
proc at a Linux terminal prompt. The /proc/[pid] files are not ‘real’—look at the file sizes
with ls -l. These pseudo-files are not stored on the persistent file system: instead, they are
file-like representations of in-memory kernel metadata for each process.

The virtual files associated with a process in /proc/[pid]/ include the following list:
cmdline The textual command that was invoked to start this process
cwd A symbolic link to the current working directory for this process
exe A symbolic link to the executable file for this process
fd/ A folder containing file descriptors for each file opened by the process
maps A table showing how data is arranged in memory
stat A list of counters for various OS events, specific to this process

Dr Manal Helal © – February 2020 – COM1032 Operating Systems – Surrey University 4

The pstree tool is another example utility—it displays similar information to our process
family tree code outlined above, but pstree uses the /proc pseudo-files rather than expensive
system calls. The pstree utility is part of the psmisc Debian package, which you may need to
install explicitly. The following figure shows typical output from pstree, for a Pi with a single
user logged in via ssh.

Now you can observe your processes with the ps command. Use the watch tool to see how
the states change over time.

watch ps u

You should see that some processes are running (R) and others are sleeping (S), waiting for
I/O (D), stopped (T), or Zombie (a dead Process) (Z). Press CTRL + c to exit the watch
program.

This quantum time value is specified on Raspberry Pi as 10ms. You can check the default
value on your Linux system with:

cat /proc/sys/kernel/sched_rr_timeslice_ms

Raspberry Pi Expansion Kit
To run the following exercise, we will need to start using the Raspberry Pi Expansion Kit that
you received in lab 1. You can do this using 2 different libraries that you can use. There is a
lower level C library “bcm2835” that works directly on the GPIO and other IO functions on
the Broadcom BCM 2835 chip directly that is faster. The details to follow the bcm2835
installation and syntax is given in the document “lab3_bcm2835” document in SurreyLearn.
WiringPi has both C and Python interface and is supported by the Freenove tutorials provided
with the expansion kit, and it is what follows below.

You need to do the following steps to get started:

1. Download the Guide zip file from: http://freenove.com/tutorial.html. You have been
given “FNK0019” kit, so this is what you need (Please note if you have another kit):

FNK0019	Freenove	Super	Starter	Kit	for	Raspberry	Pi	View	Download	

Or by:

cd ~
git clone --depth 1 https://github.com/freenove/Freenove_Super_Starter_Kit_for_Raspberry_Pi
mv Freenove_Super_Starter_Kit_for_Raspberry_Pi freenove

Dr Manal Helal © – February 2020 – COM1032 Operating Systems – Surrey University 5

2. In the extracted folder “freenove”, you will find “Read Me First” pdf require that you
remove all chips and modules inserted into the breadboard before use.

3. From Chapter 7 “AD/DA” of Tutorial.pdf, you will need to enable I2C interface in
raspberry pie. Type command in the terminal:

sudo raspi-config

4. Choose “5 Interfacing Options”->“P5 I2C”->“Yes”->“Finish” in order and restart your
RPi later. Then the I2C module is started.

5. Type a command to check whether the I2C module is started:

lsmod | grep i2c

6. Type the command to install I2C-Tools.

sudo apt install i2c-tools

7. I2C device address detection:

i2cdetect -y 1

8. WiringPi is a GPIO access library written in C for the BCM2835/BMC2836/ BMC2837
used in the Raspberry Pi. It’s released under the GNU LGPLv3 license and is usable
from C, C++ and many other languages with suitable wrappers (See below) It’s
designed to be familiar to people who have used the Arduino “wiring” system. (for
more details, please refer to http://wiringpi.com/). It should be in your system, but
if not, install it as follows:

sudo apt-get update
sudo apt-get upgrade
sudo apt-get install wiringpi

9. Run the gpio command to check the installation:

gpio -v

10. In the extracted folder, there is Code folder, in which there is C_Code subfolder, in
which a number of C examples exist. There is also Python_Code subfolder for python
examples.

11. From the C code, run the 01.1.1_Blink example by changing to its folder to find the
source file.

12. First Connect the circuit as shown in the diagrams. First the board is internally
connected as shown in the right-hand side picture:

13. Shut down Pi, and connect the expansion board as the diagram shows:

Dr Manal Helal © – February 2020 – COM1032 Operating Systems – Surrey University 6

14. Continue the circuit as following diagram shows:

15. If you need to learn the Geany editor, instead of nano or vi, use the following

command to open the Geany in the sample file “Blink.c" file directory path:

Dr Manal Helal © – February 2020 – COM1032 Operating Systems – Surrey University 7

geany Blink.c

16. Use following command to compile “Blink.c” and generate executable file “Blink”.

gcc Blink.c -o Blink -lwiringPi

17. Then run the generated file “Blink”.

sudo ./Blink

18. Now, LED start blink.

Use the Lab3_Monitoring” Document to install Raspberry monitoring packages such as RPi-
Monitor, Piscope, and GTKWave. I used Piscope to produce the following screens to
investigate how processes are interrupted by the OS.

Running the application at the command prompt and nothing running in the background gave
something like any of the following images on the pin:

i.e. Very occasional process interruptions.

Dr Manal Helal © – February 2020 – COM1032 Operating Systems – Surrey University 8

Now starting the game Minecraft and the browser in the background and any other tasks like
another code that copies files from one location to another (I/O is usually slower), to make
the RPi busy gave this:

This remained until the browser was fully loaded and less processes are running in the
background at which point the pin output returned to the previous state.

Sleeping
Good applications tell the Linux scheduler when they are happy to be halted so another
process can be run. The scheduler is a complex beast but we have found that simply
using delay(500) in the WiringPi Library or bcm2835_delay(500) in the bcm2835 library in
your programs main loop is enough to give the scheduler an opportunity to run another
process and avoid it letting your application run but periodically halt it for a significantly
longer time for many other processes to be run before handing execution back to your
application. If your application needs constant fast monitoring of inputs or control of outputs
then including this can help reduce the length of time your application is halted, assuming no
other heavy process runs in the system (in which case the scheduler will decide how to split
running time between you and the other process – e.g. switching every 10mS in the test
above).
Guaranteeing a slice of time for critical IO operations

Another approach if you need to know you are not going to be interrupted by the scheduler,
for instance say you want to generate RC servo PWM signals using GPIO pins, could be to
just ensure you limit your operations to less than 10mS before calling delay () letting the
scheduler know you are happy to sleep. This way you limit the maximum time your process
needs to run before interruption to below the schedulers maximum time (often 10mS) and just
accept that you don't know how long it will be before you get another slice of time, but at
which point you are as sure as you can be that you will get the next block of time you need to
complete another set of your IO operations. This may overcome some of the real time issues
of working on top of an OS and its scheduler – 10mS is a lot of time to get IO operations
done.
I will add some more on the configuration tools and options

Dr Manal Helal © – February 2020 – COM1032 Operating Systems – Surrey University 9

Java Process Communication APIs

We will focus on Socket Programming and Message Passing.
Java Sockets:
This section of the lab will introduce you to socket programming, as an example for inter-
process communication. As discussed in the lecture, other programming languages offer
different syntax for the same concept. For example, Windows XP offer Local Procedure Call
(LPC) to enable two processes on the same machine to communicate. Communication using
sockets—although common and efficient—is generally considered a low-level form of
communication between distributed processes. One reason is that sockets allow only an
unstructured stream of bytes to be exchanged between the communicating threads. It is the
responsibility of the client or server application programmers to impose a structure on the
data. Three other strategies for communication in client–server systems include sockets,
remote procedure calls (RPCs), and Java’s remote method invocation (RMI). More on these
APIs will be introduced in COM2038 Parallel Computing Module next year.
A socket is defined as an endpoint for communication. A pair of processes communicating
over a network employ a pair of sockets — one for each process. A socket is identified by an
IP address concatenated with a port number. In general, sockets use a client – server
architecture. The server waits for incoming client requests by listening to a specified port.
Once a request is received, the server accepts a connection from the client socket to complete
the connection. For example, if a client on host X with IP address 146.86.5.20 wishes to
establish a connection with a Web server (which is listening on port 80) at address
161.25.19.8, host X may be assigned port 1625. The connection will consist of a pair of
sockets: (146.86.5.20:1625) on host X and (161.25.19.8:80) on the Web server. More on that
will be introduced on COM2022 Computer Networking.
To explore socket programming further, we turn next to an illustration using Java. Java
provides an easy interface for socket programming and has a rich library for additional
networking utilities.
Java provides three different types of sockets. Connection-oriented (TCP) sockets are
implemented with the Socket class. Connectionless (UDP) sockets use the DatagramSocket
class. Finally, the MulticastSocket class is a subclass of the DatagramSocket class. A
multicast socket allows data to be sent to multiple recipients.
The following example describes a date server that uses connection-oriented TCP sockets.
The operation allows clients to request the current date and time from the server. The server
listens to port 6013, although the port could have any arbitrary number greater than 1024.
When a connection is received, the server returns the date and time to the client.
The date server source code is shown below. You need to start an eclipse project, and add this
code in a file called “DateServer.java”;
import java.net.*;
import java.io.*;
public class DateServer {
 public static void main(String[] args) {
 try {
 ServerSocket sock = new ServerSocket(6013);
 // now listen for connections
 while (true) {
 System.out.println("Server started");
 System.out.println("Waiting for a client ...");
 Socket client = sock.accept();
 System.out.println("Client accepted");
 PrintWriter pout = new PrintWriter
 (client.getOutputStream(), true);
 // write the Date to the socket

Dr Manal Helal © – February 2020 – COM1032 Operating Systems – Surrey University 10

 pout.println(new
 java.util.Date().toString());
 // close the socket and resume
 // listening for connections
 client.close();
 }
 }
 catch (IOException ioe) {
 System.err.println(ioe);
 }
 }
}

The server creates a ServerSocket that specifies it will listen to port 6013. The server then
begins listening to the port with the accept() method. The server blocks on the accept()
method waiting for a client to request a connection. When a connection request is received,
accept() returns a socket that the server can use to communicate with the client. The server
first establishes a PrintWriter object that it will use to communicate with the client. A
PrintWriter object allows the server to write to the socket using the routine print() and
println() methods for output. The server process sends the date to the client, calling the
method println(). Once it has written the date to the socket, the server closes the socket to the
client and resumes listening for more requests.
A client communicates with the server by creating a socket and connecting to the port on
which the server is listening. Add a new class “DateClient.java”in your project and add the
following code.
import java.net.*;
import java.io.*;
public class DateClient {
 public static void main(String[] args) {
 try {
 //make connection to server socket
 Socket sock = new Socket("127.0.0.1",6013);
 System.out.println("Connected");
 InputStream in = sock.getInputStream();
 BufferedReader bin = new
 BufferedReader(new InputStreamReader(in));
 // read the date from the socket
 String line;
 while ((line = bin.readLine()) != null)
 System.out.println(line);
 // close the socket connection
 sock.close();
 }
 catch (IOException ioe) {
 System.err.println(ioe);
 }
 }
}

The client creates a Socket and requests a connection with the server at IP address 127.0.0.1
on port 6013. Once the connection is made, the client can read from the socket using normal
stream I/O statements. After it has received the date from the server, the client closes the
socket and exits. The IP address 127.0.0.1 is a special IP address known as the loopback.
When a computer refers to IP address 127.0.0.1, it is referring to itself. This mechanism
allows a client and server on the same host to communicate using the TCP/IP protocol. The
IP address 127.0.0.1 could be replaced with the IP address of another host running the date

Dr Manal Helal © – February 2020 – COM1032 Operating Systems – Surrey University 11

server. In addition to an IP address, an actual host name, such as www.surrey.ac.uk, can be
used as well.
After writing the code for both client and server end, you can execute the server-side program
first. After that, you need to run client-side program and send the request. As soon as the
request is sent from the client end, server will respond back. Below snapshot represents the
same.

19. When you run the server side script, it will start and wait for the client to get started.

20. Next, the client will get connected and inputs the request in the form of a string.

21. When the client sends the request, the server will respond back.

Message Passing for Processes:
This section will provide approaches to the producer-consumer problem using shared
memory. To allow producer and consumer processes to run concurrently, we must have
available a buffer of items that can be filled by the producer and emptied by the consumer.
This buffer will reside in a region of memory that is shared by the producer and consumer
processes. Some operating systems allow processes. A producer can produce one item while
the consumer is consuming another item. The producer and consumer must be synchronized,
so that the consumer does not try to consume an item that has not yet been produced.
Although Java does not provide support for shared memory, we can design a solution to the
producer–consumer problem in Java that emulates shared memory by allowing the producer
and consumer processes to share an instance of the MessageQueue class.
You can implement a Channel.java interface with send and receive methods as follows:
// Send a message to the channel
public void send(E item);
// Receive a message from the channel
public E receive();

In MessageQueue class, implement the channel interface using a buffer that can be
implemented using the java.util.Vector class, meaning that it will be a buffer of unbounded
capacity. Since these are normal method calls, we can consider both the send() and receive()
methods are nonblocking.
When the Producer generates an item, it places that item in the mailbox via the send()
method. The code for the Producer is implemented in Producer.java class that you can
download from SurreyLearn.

Dr Manal Helal © – February 2020 – COM1032 Operating Systems – Surrey University 12

The Consumer obtains an item from the mailbox using the receive() method. Because
receive() is nonblocking, the consumer must evaluate the value of the Object returned from
receive(). If it is null, the mailbox is empty. The code for the Consumer is implemented in the
Test.java class that you can download from SurreyLearn.

Exercise:

• Do a socket-based chat program that takes the address and port numbers as arguments, and
you can start as many processes of them as you need to chat as pairs or groups.

• Hint: Download the skeleton code and follow the TODO comments to write the required

code.

