
Dr Manal Helal © – March 2020 – COM1032 Mobile Computing – Surrey University 1

COM1032 COM1032 COM1032 COM1032 Operating SystemsOperating SystemsOperating SystemsOperating Systems

Lab Lab Lab Lab 7777

Memory Management

Purpose:

The purpose of this lab session is to familiarise yourself with the Operating System Memory

Management processes, and investigation methods. You will run Memory Profiler and

generate, save, and inspect data.

Aim

By the end of the lab you will be able to:

• Use Memory Profiler to collect data about your application.

• View Memory Profiler reports.

• Dump the Java heap and inspect it.

Eclipse Memory Analyser Tool (MAT):

Task 1: Install the tool

The Eclipse Memory Analyser tool (MAT) is a fast and feature-rich heap dump analyser that

helps you find memory leaks and analyse high memory consumption issues. Install Eclipse

MAT via the Help Menu → Install New Software… menu entry. Select the update site of

your release from the drop-down box and once its content is downloaded, select General

Purpose Tools and its sub-entries Memory Analyser and Memory Analyser (Charts). In the

opened dialog, in the “Work with” section on top, click to Add, and add the Luna release

using the repository: http://download.eclipse.org/releases/luna. Click Ok to go back to the

first dialog and wait for existing software to refresh. In the “General Purpose Tools” choose

the two packages shown in the figure below.

Dr Manal Helal © – March 2020 – COM1032 Mobile Computing – Surrey University 2

Task 2: Create an Example Application

Create the Java project and create the following class:

import java.util.ArrayList;

import java.util.List;
public class Main {

 /**

 * @param args

 */

 public static void main(String[] args) {
 List<String> list = new ArrayList<String>();

 while (true)

 list.add("OutOfMemoryError soon");

 }

}

Task 3. Acquire a Heap Dump

A heap dump is a snapshot of the complete Java object graph on a Java application at a

certain point in time. It is stored in a binary format called HPROF (Heap Memory Profiling).

It includes all objects, fields, primitive types and object references.

Get Heap Dump on an OutOfMemoryError

It is possible to instruct the JVM to create automatically a heap dump in case that it runs out of memory, i.e.
in case of a OutOfMemoryError error. To instruct the JVM to create a heap dump in such a situation, start
your Java application with the -XX:+HeapDumpOnOutOfMemoryError option by adding the following line to
the arguments of your run or debug configuration of your application:

Dr Manal Helal © – March 2020 – COM1032 Mobile Computing – Surrey University 3

The heap dump is written to the work directory.

To attach to a running process: use the File Menu → New → Other → Other → Heap Dump menu entry

to open a dialog to select for which process you want to acquire a memory dump.

Depending on the concrete execution environment the pre-installed heap dump providers may work with
their default settings and in this case a list of running Java processes should appear: To make selection
easier, the order of the Java processes can be altered by clicking on the column titles for pid or Heap
Dump Provider.

Dr Manal Helal © – March 2020 – COM1032 Mobile Computing – Surrey University 4

One can now select from which process a heap dump should be acquired, provide a preferred location for
the heap dump and press Finish to acquire the dump. Some of the heap dump providers may allow (or
require) additional parameters (e.g. type of the heap dump) to be set. This can be done by
using Next button to get to the Configuring Heap Dump Provider Arguments page of the wizard. Check the

online documentation: https://help.eclipse.org/2019-

12/index.jsp?topic=%2Forg.eclipse.mat.ui.help%2Ftasks%2Facquiringheapdump.html.

Run the project you created in Task 2. It crashes and writes a heap dump.

Open the heap dump in MAT and get familiar with using the MAT tooling.

The index files generated have a component in the file name from the snapshot identifier, so the index
files from each snapshot can be distinguished. This means that multiple snapshots from one heap dump

Dr Manal Helal © – March 2020 – COM1032 Mobile Computing – Surrey University 5

file can be examined in Memory Analyzer simultaneously. The heap dump history for the file remembers
the last snapshot selected for that file, though when the snapshot is reopened via the history the index
file is also shown in the history. To open another snapshot in the dump, close the first snapshot, then
reopen the heap dump file using the File menu and another snapshot can be chosen to be parsed. The
first snapshot can then be reopened using the index file in the history, and both snapshots can be
viewed at once.

Task 4: Reviewing a heap dump

After a new heap dump with the .hprof ending has been created, you can open it via a double-

click in Eclipse. If you used MAT to create the heap dump, it should be opened

automatically.

You may need to refresh your project (F5 on the project). Double-click the file and select the

Leak Suspects Report. You might see the following screen:

Click OK to install MAT if Task 1 was unsuccessful, or needs update:

Dr Manal Helal © – March 2020 – COM1032 Mobile Computing – Surrey University 6

Then restart Eclipse. Double click the HPROF file again. You might get an Eclipse Internal

Error because the heap size is much smaller than 2.5 GB dump file you are trying to open.

You solve this by editing your eclipse.ini file to increase the vm argument to -Xmx1024m or

higher. In Windows: 1) Set higher xmx here : Control Panel > Java > Java tab > View.. >

Runtime parameters. [20gb just for the load]

1. open the Eclipse.ini in the folder where Eclipse executable is located.

2. change the default -Xmx1024m to a larger size, -Xmx20g worked for me.

Note that on OS X, to increase the memory allocated to MAT, you need to right-click

Memory Analyzer.app or Eclipse.app and show the package contents. The

MemoryAnalyzer.ini or Eclipse.ini file is under /Contents/MacOS/.

Dr Manal Helal © – March 2020 – COM1032 Mobile Computing – Surrey University 7

Now you can choose from the following options:

The overview page allows you to start the analysis of the heap dump. The dominator tree

gives quickly an overview of the used objects.

Dr Manal Helal © – March 2020 – COM1032 Mobile Computing – Surrey University 8

On the right, you'll find the size of the dump and the number of classes, objects and class loaders.

If the total size of the dump is much smaller than the size of the file it is possible that the heap dump
contained many 'garbage' objects which would be discarded at the next garbage collection. See
the unreachable objects query to examine these 'garbage' objects.

Right below, the pie chart gives an impression on the biggest objects in the dump. Move your mouse over a
slice to see the details of the objects in the object inspector on the left. Click on any slice to drill down and
follow for example the outgoing references.

Step 3 - The Histogram

Select the histogram from the tool bar to list the number of instances per class, the shallow size and
the retained size .

The Memory Analyzer displays by default the retained size of individual objects. However, the retained size
of a set of objects - in this case all instances of a particular class - needs to be calculated.

To approximate the retained sizes for all rows, pick icon from the tool bar. Alternatively, select a couple
rows and use the context menu.

Dr Manal Helal © – March 2020 – COM1032 Mobile Computing – Surrey University 9

Using the context menu , you can drill-down into the set of objects which the selected row represents. For
example, you can list the objects with outgoing or incoming references. Or group the objects by the value of
an attribute. Or group the collections by their size. Or or or...

One thing that makes the Memory Analyzer so powerful is the fact that one can run any action on any set
of objects. Just drill down and slice your objects the way you need them.

Another important feature is the facility to group any histogram by class loader, packages or
superclass .

Any decent application loads different components by different class loaders. The Memory Analyzer
attaches a meaningful label to the class loader - in the case of OSGi bundles it is the bundle id. Therefore it
becomes a lot easier to divide the heap dump into smaller parts.

More: Analyze Class Loader

Dr Manal Helal © – March 2020 – COM1032 Mobile Computing – Surrey University 10

Grouping the histogram by packages allows to drill-down along the Java package hierarchy.

Grouping the histogram by superclass provides an easy way to find for example all the subclasses of
java.util.AbstractMap, etc...

Dr Manal Helal © – March 2020 – COM1032 Mobile Computing – Surrey University 11

Step 4 - The Dominator Tree

The dominator tree displays the biggest objects in the heap dump. The next level of the tree lists those
objects that would be garbage collected if all incoming references to the parent node were removed.

The dominator tree is a powerful tool to investigate which objects keep which other objects alive. Again, the
tree can be grouped by class loader (e.g. components) and packages to ease the analysis.

Dr Manal Helal © – March 2020 – COM1032 Mobile Computing – Surrey University 12

Step 5 - Path to GC Roots

Garbage Collections Roots (GC roots) are objects that are kept alive by the Virtual Machines itself. These
include for example the thread objects of the threads currently running, objects currently on the call stack
and classes loaded by the system class loader.

The (reverse) reference chain from an object to a GC root - the so called path to GC roots - explains why
the object cannot be garbage collected. The path helps solving the classical memory leak in Java: those
leaks exist because an object is still referenced even though the program logic will not access the object
anymore.

Dr Manal Helal © – March 2020 – COM1032 Mobile Computing – Surrey University 13

Initially, the GC root reached by the shortest path is selected.

Step 6 - The Leak Report

Dr Manal Helal © – March 2020 – COM1032 Mobile Computing – Surrey University 14

The Memory Analyzer can inspect the heap dump for leak suspects, e.g. objects or set of objects which are
suspiciously big.

Learn more in this blog posting: Automated Heap Dump Analysis: Finding Memory Leaks with One
Click http://memoryanalyzer.blogspot.com/2008/05/automated-heap-dump-analysis-finding.html .

Using Memory Analyzer to analyse problems

Memory Analyzer can diagnose OutOfMemoryErrors by looking for areas of the application

that are either leaking memory or have a footprint requirement that's too large for the

available memory. Memory Analyzer does automatic leak detection and generates a Leak

Suspects report.

The additional data that's available in the HPROF and IBM system dumps, particularly the

field names and field values — along with the capabilities of the Inspector view and Object

Query Language (OQL) — also make it possible to diagnose a wider range of problem

types than "What's using all of the memory?". For example, you can ascertain the occupancy

and load factor of collections to see if they are efficiently sized, or look at the hostname and

port associated with a ConnectException to see what connection the application was trying to

create. For more information on OQL, please check https://help.eclipse.org/2020-

03/index.jsp?topic=%2Forg.eclipse.mat.ui.help%2Freference%2Foqlsyntax.html.

Summary

• Use Memory Profiler to observe how your app uses memory over time. Look for

patterns that indicate memory leaks.

• Use Java heap dumps to identify which classes allocate large amounts of memory.

• Record allocations over time to observe how apps allocate memory and where in your

code the allocation is happening.

Final Coursework Hints:

In your final Coursework, you will need incremental development of subsystems in a

modular way, and get them to interface together.

https://blogs.oracle.com/java/introduction-to-modular-development

As you finish every step, run the MAT to identify any memory leaks, and what is stopping

the garbage collection from working, and any logical problem that you might be observing.

Dr Manal Helal © – March 2020 – COM1032 Mobile Computing – Surrey University 15

You can add these analysis steps to your report and document how you solved the various

problems.

https://help.eclipse.org/2020-

03/index.jsp?topic=%2Forg.eclipse.mat.ui.help%2Fgettingstarted%2Fbasictutorial.html

https://help.eclipse.org/2020-

03/index.jsp?topic=%2Forg.eclipse.mat.ui.help%2Fgettingstarted%2Fbasictutorial.html

From the theoretical concepts discussed in the lecture, consider adding a memory

management unit (MMU) functions to allocate memory in the heap. If you choose to

implement an MMU, you will need to define the instructions to dynamically allocate and free

memory in the instruction set that your OS Simulator supports. You might choose to include

an automatic garbage collection that free allocated memory automatically without specifying

instructions to do this. You might design the suitable times in which it is triggered. You

might employ concepts such as paging, segmentation, swapping, and virtual memory. You

might also consider the memory requirements by a process as a resource request that is

considered in your resource allocation based scheduling and deadlock prevention algorithm

implementation.

Exercise 2:

Assuming that a system has a 32-bit virtual address, write a Java program that is passed (1)

the size of a page and (2) the virtual address. Your program will report the page number and
offset of the given virtual address with the specified page size. Page sizes must be specified as a
power of 2 and within the range 1024 —16384 (inclusive). Assuming such a program is named

Address, it would run as follows:

java Address 4096 19986

and the correct output would appear as:

The address 19986 contains:

page number = 4

offset = 3602

