
Dr Manal Helal © – March 2020 – COM1032 Mobile Computing – Surrey University 1

COM1032 COM1032 COM1032 COM1032 Operating SystemsOperating SystemsOperating SystemsOperating Systems

Lab Lab Lab Lab 8888

Virtual Memory Management

Purpose:

The purpose of this lab session is to familiarise yourself with the Operating System Memory

Management processes, and investigation methods such as Page Replacement Algorithms

and Virtual Memory Management.

Aim

By the end of the lab you will be able to:

• Familiarise yourself with Page Replacement Algorithms and simulate them.

• Design a Virtual Memory Manager.

Exercise 1: Testing the performance of Page Replacement Algorithms

Introduction

In week 7, you studied Main Memory structure whether using paging or segmentation or

hybrid partitioning with the logical addressing mapping to physical addressing techniques by

the memory-management unit (MMU). Those methods rely on having multiple processes in

memory at the same time. This week you will study Virtual Memory techniques that enable

the OS to swap out (context switch) to secondary memory (usually a disk), whether complete

processes, or some pages of very large processes. This form of dynamic loading is managed

by demand paging, which means to load only the needed pages based on the execution paths

the program goes through. You understand that if statements make some code accessible and

some not based on same values that can be defined at run time. So some libraries containing

code references might never be required for a specific execution path. For example load an

initial process, and by user requests, special cases or exception/error/interrupt handling load

optional pages when needed only. This will enable your OS to execute processes that are

larger than the available memory, and may ignore partitions of processes that is rarely used.

This will require some page replacement algorithms (choose which page already loaded in

memory to replace with another newly requested one) to be studied, and evaluated in terms of

complexity and cost. In this lab we will practice this, and study the theory behind it by the

end of the week. You can access some explanation and a working example in the summary

page of Week 8:

https://surreylearn.surrey.ac.uk/d2l/le/content/188676/viewContent/1792789/View

Dr Manal Helal © – March 2020 – COM1032 Mobile Computing – Surrey University 2

Requirements:

Write a program that implements the FIFO (First In First Out) and LRU (Least Recently

Used) page-replacement algorithms presented in chapter 9 of the Silberschatz textbook and

covered in week 8. First, generate a random page reference string where page numbers range

from 0 to 9. Apply the random page-reference string to each algorithm, and record the

number of page faults incurred by each algorithm. Implement the replacement algorithms so

that the number of page frames can vary as well. Assume that demand paging is used. Your

algorithms will be based on the abstract class depicted below:

public abstract class ReplacementAlgorithm {
 // the number of page faults

 protected int pageFaultCount;
 // the number of physical page frame

 protected int pageFrameCount;

 // pageFrameCount - the number of physical page frames

 public ReplacementAlgorithm(int pageFrameCount) {
 if (pageFrameCount < 0)

 throw new IllegalArgumentException();
 this.pageFrameCount = pageFrameCount;

 pageFaultCount = 0;

 }
 // return - the number of page faults that occurred.

 public int getPageFaultCount() {
 return pageFaultCount;

 }
 // int pageNumber - the page number to be inserted

 public abstract void insert(int pageNumber);

}

Design and implement two classes—LRU and FIFO—that extend ReplacementAlgorithm.

Each of these classes will implement the insert() method, one class using the LRU page-

replacement algorithm and the other using the FIFO algorithm. We will study how to design

the LRU and FIFO classes in the lecture and I will release the code before the lecture. Just

attempt them for now by reading the explanation in the link above in SurreyLearn.

There are two classes available on SurreyLearn to test your algorithm:

a. PageGenerator—a class that generates page-reference strings with page numbers

ranging from 0 to 9. The size of the reference string is passed to the PageGenerator
constructor. Once a PageGenerator object is constructed, the getReferenceString()
method returns the reference string as an array of integers.

b. Test—used to test your FIFO and LRU implementations of the ReplacementAlgorithm
abstract class. Test is invoked as

java Test <reference string #> <# of page frames>

Which means, you pass on the size of the test string, and the number of page frames to work on.
Such as “java Test 20 3” to generate a reference string of length 20, and simulate using 3 page
frames resident in memory. Check the link above for a working example. Once you have
implemented the FIFO and LRU algorithms, experiment with a different number of page frames for
a given reference string and record the number of page faults. Does one algorithm perform better
than the other? For a given reference-string size, what is the optimal number of page frames?

Dr Manal Helal © – March 2020 – COM1032 Mobile Computing – Surrey University 3

Exercise 2: Designing a Virtual Memory Manager.

This project consists of writing a Java program that translates logical to physical addresses for a

virtual address space of size 216
 = 65,536 bytes. The program will read from a file containing

logical addresses and, using a translation look-aside buffers (TLB – explained in Section 8.4 of

the Silberschatz textbook and covered in week 7, Check Week 7 slides 43, 44 – check the
outline in the slides for extended explanation or listen to the recording again) as well as a page
table, will translate each logical address to its corresponding physical address and output the
value of the byte stored at the translated physical address.

Your program will read a file containing several 32-bit integer numbers that represent logical
addresses. However, you need only be concerned with 16-bit addresses, so you must mask the
rightmost 16 bits of each logical address.

These 16 bits are divided into (1) an 8-bit page number and (2) 8-bit page offset.
Hence, the addresses are structured as shown in the Figure below:

Figure 1: Address structure

Other specifics include:

• 28
 entries in the page table

• Page size = 28
 bytes

• 16 entries in the TLB

• Frame size = 28
 bytes

• 256 frames

• Physical memory = 65,536 bytes (256 frames × 256-byte frame size)

Additionally, your program need only be concerned with reading logical addresses and
translating them to their corresponding physical addresses. You do not need to support writing to
the logical address space.

Address Translation
Your program will translate logical to physical addresses using a TLB and page table. First, the
page number is extracted from the logical address, and the TLB is consulted. In the case of a
TLB-hit, the frame number is obtained from the TLB. In the case of a miss, the page table must be
consulted. If the frame number cannot be obtained from the page table, a page fault occurs. A
representation of the address translation process appears in the Figure below:

Dr Manal Helal © – March 2020 – COM1032 Mobile Computing – Surrey University 4

Handling Page Faults

Your program will implement demand paging as described in Section 9.2 of the Silberschatz

textbook and covered in week 8. The backing store is represented by the file

BACKING_STORE, a binary file of size 65,536 bytes. When a page fault occurs, you will read in

a 256-byte page from the file BACKING_STORE and store it in an available page frame in
physical memory. For example, if a logical address with page number 15 results in a page fault,

your program will read in page 15 from BACKING_STORE (remember that pages begin at 0
and are 256 bytes in size) and store it in a page frame in physical memory. Once this frame is
stored (and the page table and TLB are updated), subsequent accesses to page 15 will be
resolved by either the TLB or the page table.

You will need to treat BACKING_STORE as a random-access file, which will allow you to
randomly seek to certain positions in the file for reading.

We provide an example program RAF.java (available on SurreyLearn) that illustrates using the API

with the java.io.RandomAccessFile class. It takes an argument a position to seek in the file as
an experiment. Such as “java RAF 80”. It seeks for 100 sometimes and seeks to the argument

passed such as 80 in this example. Finally, make sure that when using BACKING_STORE, you
open it for reading only, as only reads are necessary and you do not want to overwrite the file:

fileName = new File("BACKING_STORE");

backingStore = new RandomAccessFile(fileName, "r");

The size of physical memory is the same as the size of the virtual address space—65,536
bytes—so you do not need to be concerned about page replacements during a page fault. Later
in this project, we describe a modification to this project using a smaller amount of physical
memory. This modification requires a page-replacement strategy.

Test File

Dr Manal Helal © – March 2020 – COM1032 Mobile Computing – Surrey University 5

We provide the file InputFile.txt (available on SurreyLearn), which contains integer values
representing logical addresses ranging from 0 through 65535 (the size of the virtual address
space). Your program will open this file, read each logical address and translate it to its
corresponding physical address, and output the value of the signed byte at the physical address.

How to Begin
Write a simple program that extracts the page number and offset from the following integer
numbers (based on Figure 1 above):

1, 256, 32768, 32769, 128, 65534, 33153

Perhaps the easiest way to do this is by using the Java operators for bit-masking and bit-shifting.
Once you can correctly establish the page number and offset from an integer number, you are
ready to begin. Initially, we suggest you bypass the TLB and use a page table, only integrating
the TLB once your page table is working properly. Remember, address translation can work
without a TLB; the TLB only serves to make it faster. When you are ready to implement the TLB,
recall that it only has 16 entries, so you will need to use a replacement strategy when you must
update a full TLB. You may use either a FIFO or an LRU policy for updating your TLB.

How to Run Your Program
Your program should run as follows:

java AddressTranslator InputFile.txt

Your program will read in the file InputFile.txt,which contains 1,000 logical addresses ranging
from 0 to 65535. Your program is to translate each logical address to a physical address and
determine the contents of the signed byte stored at the correct physical address.

Your program is to output the following values:

1. The logical address being translated (the integer value being read from InputFile.txt)
2. The corresponding physical address (your program’s translation of the logical address)
3. The signed byte value stored at the translated physical address

Also on SurreyLearn we provide the file correct.txt, which contains the correct output values for the
file InputFile.txt. Use this file to determine if your program is correctly translating logical to
physical addresses.

Statistics
After completion, your program is to report the following statistics:

1. Page fault rate—The percentage of address references that resulted in page faults
2. TLB hit rate—The percentage of address references that were resolved in the TLB

Since the logical addresses in InputFile.txt are generated randomly and do not reflect any
memory access locality, do not expect to have a high TLB hit rate.

Modifications
This project assumes that physical memory is the same size as the virtual address space. In
practice, physical memory is typically much smaller than a virtual address space. Modify your
program to use a smaller physical address space. Rather than using 256 page frames, we
recommend using 128. This will require your program to keep track of free page frames as well
as implementing a page-replacement policy using either FIFO or LRU (Section 9.4).

