
Dr Manal Helal © – January 2019 – COM1032 Mobile Computing – Surrey University

COM1032 Mobile Computing
Lab 5

Android Threads Synchronisation
Purpose:
The purpose of this lab session is to familiarise yourself with the Android and Java
Synchronisation programming constructs.

Aim
By the end of the lab you will be able to:

• Differentiate the different ways we can do synchronization in Java
• Practice a number of problems on which synchronization is required and how it

affects the logical output and possible errors elimination methods.

Race Condition Example:
Let’s start by the ATM example without any synchronisation and see how the shared balance
variable will be affected. Create in Android Studio a project named “SyncTests” with empty
activity with all default configuration. In the project create a class named “ATM”, and
implement it as follows:

package com.example.synctests;
public class ATM {

private int balance = 0;
public void deposit() {
 balance ++;
}
public void withdraw() {
 balance --;
}
public int getBalance() {
 return balance;
}

}

In the activity_main.xml update the default TextView to the following:
<TextView
 android:id="@+id/textview"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Hello World!"
 app:layout_constraintBottom_toBottomOf="parent"

Dr Manal Helal © – January 2019 – COM1032 Mobile Computing – Surrey University

 app:layout_constraintLeft_toLeftOf="parent"
 app:layout_constraintRight_toRightOf="parent"
 app:layout_constraintTop_toTopOf="parent" />

In the MainActivity.java import the Runnable Interface, Thread Class, and TextView class as
discussed in the lecture. Add the following class members to keep track of the number of times
deposit method was called from thread A, and number of times withdrawal method was called
from thread B:

TextView textView;
ATM atm;
int deposits = 0;
int withdrawals = 0;
Handler handler = new Handler();

The Handler is to enable periodic updating of the UI. You will need a Runnable to pass to the
handler, and keep sending itself as a message to its run method. This will create the periodic
updates of the UI. Implement this Runnable as follows:

private final Runnable mUIUpdater = new Runnable(){
 public void run(){
 try {

 //prepare and send the data here..
 String msg = "Current Balance: " + String.valueOf(atm.getBalance()) + " after
 "+ deposits + " deposits and " + withdrawals + " withdrawals";
 textView.setText(msg);
 System.out.println(msg);
 // resend itself after 1000 milliseconds to re-update the UI
 handler.postDelayed(this, 1000);

 }
 catch (Exception e) {

 e.printStackTrace();
 }
 }
};

In the onCreate method in the MainActivity.java add the following code at the end of the method:

atm = new ATM ();

Thread A = new Thread (new Runnable() {
 public void run (){
 while (true) {
 atm.deposit();
 deposits ++;
 try {
 Thread.currentThread().sleep((int)(Math.random() * 1000));
 } catch (InterruptedException e) {}
 }
 }

});

Thread B= new Thread (new Runnable() {
 public void run (){
 while (true) {
 atm.withdraw();
 withdrawals++;
 try {
 Thread.currentThread().sleep((int)(Math.random() * 2000));
 } catch (InterruptedException e) {}

Dr Manal Helal © – January 2019 – COM1032 Mobile Computing – Surrey University

 }
 }

});

A.start();
B.start();

textView = (TextView) findViewById(R.id.textView);//get id of ToThread
handler.post(mUIUpdater);

This will create the threads A and B, one calling atm.deposit method in an infinite loop, and
the other calling atm.withdraw method infinitely. It will also post the UIUpdater runnable to
the first time, and then will be called every one second from inside the run method in the
Runnable.

Exercise 1: Run the project and check the UI, and as well the console printing to observe the
performance. take a copy of the console output and run again and check if every run will give
same output or not.

Semaphores as Mutex:
Now let’s try to synchronise the ATM example as follows. Add the following class member
in the ATM class:
static Semaphore semaphore = new Semaphore(1); // only one thread in the CS

Since the balance variable is the shared resource between both threads, updating its value is
the critical section that require a mutex to guarantee that only one thread is actively updating
the balance. Before every update to the balance value acquire the semaphore, then release it:

This how to acquire the semaphore:
try {
 semaphore.acquire();
}
catch (java.lang.InterruptedException e) {}

This is how to release it:
semaphore.release();

Exercise 2: Run the project and observe the output in the UI and the console. Notice that
thread A deposits every 1 second, and thread B withdraws every 2 seconds. Run several times
and observe. Is there any change in the output between the different runs?
Hint: Balance = withdrawals – deposits

Producer/Consumer Monitor Example:
Create a new project with empty activity named “ProdConsMonitor” using default settings.
Add the Producer class to extend Thread and implement as follows:

public class Producer extends Thread{
 static final int MAXQUEUE = 5;
 private Vector messages = new Vector();

Dr Manal Helal © – January 2019 – COM1032 Mobile Computing – Surrey University

 @Override
 public void run (){
 try {
 while (true) {
 putMessage();
 }
 }catch (InterruptedException e) {}
 }

 private synchronized void putMessage() throws InterruptedException{
 while (messages.size() == MAXQUEUE)
 wait();
 messages.addElement(new java.util.Date().toString());
 System.out.println("put message, vector size = " + messages.size());
 notify();
 }

 public synchronized String getMessage () throws InterruptedException {
 notify();
 while (messages.size() == 0)
 wait();
 String message = (String) messages.firstElement();
 messages.remove(message);
 return message;
 }
}

Now create new Consumer class to extend Thread class and implement it as follows:

public class Consumer extends Thread {
 private Producer producer;

 public Consumer (Producer p) {
 producer = p;
 }

 @Override
 public void run(){
 try {
 while (true) {
 String message = producer.getMessage();
 System.out.println("Consumer Got Message: " + message);
 }
 } catch (InterruptedException e) {}
 }
}

Back to the onCreate method in the MainActivity.java, create the producer and the consumer
threads as follows:

Producer p = new Producer();
p.start();
Consumer c = new Consumer(p);
c.start();

Notice we used a mutex using synchronised keyword on the method and used the Object
class wait/notify messaging.

Exercise 3: Run the project and observe the output in the console. Run several times. Check
the messages vector size. Is it the same between the different runs?

Dr Manal Helal © – January 2019 – COM1032 Mobile Computing – Surrey University

Producer/Consumer Locks and Conditions
Example:
Now create a new project named “ProdConsLockCond” using empty activity using default
settings again. Create a Producer class that extends Thread class and implement it as follows:

public class Producer extends Thread {
 ReentrantLock lock;
 Condition con;
 Queue<Integer> queue;
 int size;

 public Producer(ReentrantLock lock, Condition con, Queue<Integer> queue, int size) {
 this.lock = lock; this.con = con; this.queue = queue; this.size = size;
 }
 public void run() {
 for (int i = 0; i < 10; i++) {
 lock.lock();
 while (queue.size() == size) {
 try {
 con.await();
 } catch (InterruptedException ex) {
 Logger.getLogger(Producer.class.getName()).log(Level.SEVERE, null, ex);
 }
 }
 queue.add(i);
 System.out.println("Produced : " + i + " queue size: " + queue.size());
 con.signal();
 lock.unlock();
 }
 }
}

Now Create the Consumer class to extend the Thread class and implement it as follows:

public class Consumer extends Thread {
 ReentrantLock lock;
 Condition con; Queue<Integer> queue;

 public Consumer (ReentrantLock lock, Condition con, Queue<Integer> queue) {
 this.lock = lock;this.con = con; this.queue = queue;
 }

 @Override
 public void run () {
 for (int i = 0;i<10;i++) {
 lock.lock();
 while (queue.size()<1){
 try {
 con.await();
 } catch (InterruptedException ex) {
 Logger.getLogger(Consumer.class.getName()).log(Level.SEVERE, null, ex);
 }
 }
 System.out.println("Consumed : " + queue.remove());
 con.signal();
 lock.unlock();
 }
 }
}

In the onCreate method in the MainActivity.java add the following code at the end of the method:

Dr Manal Helal © – January 2019 – COM1032 Mobile Computing – Surrey University

Queue<Integer> queue=new LinkedList<Integer>();
ReentrantLock lock=new ReentrantLock();
Condition con=lock.newCondition();
final int size = 5;
new Producer(lock, con, queue, size).start();
new Consumer(lock, con, queue).start();

Exercise 4: Run the project and observe the output in the console. Run several times. Check
the messages queue size, and when produced and when consumed. Is it the same between the
different runs?

Conclusion
You should now have a working example that demonstrates how to synchronize access to shared
variables using various java synchronisation programming constructs. These examples show as
well various way to object ownership and how to pass them to different threads. The periodic UI
update using Handler messaging is very useful. You should notice missing packages to import to
make these code snippets work together. Android Studio suggest these packages for you. You can
check the lecture for more information.

