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Chapter 3

Describing Syntax 
and Semantics
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Chapter 3 Topics

• Describing the Meanings of Programs:    
Dynamic Semantics
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Semantics

• There is no single widely acceptable notation 
or formalism for describing semantics 

• Several needs for a methodology and 
notation for semantics: 
– Programmers need to know what statements mean 
– Compiler writers must know exactly what language 

constructs do 
– Correctness proofs would be possible 
– Compiler generators would be possible 
– Designers could detect ambiguities and inconsistencies
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Three Major Classes of Approaches
» Operational Semantics 

» the execution of the language is described directly (rather 
than by translation) ==> Interpretation. 

» Define an abstract machine, then give meaning to the 
execution of statements (entire machine states’ 
transitions) 

» Denotational Semantics 
» describing the meaning mathematically using recursive 

functions (State of variables only) 
» Axiomatic Semantics 

» Define the meaning of statements by describing the 
logical axioms that apply to them: predicate calculus to 
prove the correctness (State of relevant variables only) 



Operational Semantics 

• Operational Semantics 
– Describe the meaning of a program by executing 
its statements on a machine, either simulated or 
actual.  The change in the state of the machine 
(memory, registers, etc.) defines the meaning of 
the statement 

• To use operational semantics for a high-
level language,  a virtual machine is needed
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Operational Semantics

• A hardware pure interpreter would be too 
expensive 

• A software pure interpreter also has 
problems 
– The detailed characteristics of the particular 
computer would make actions difficult to 
understand 

– Such a semantic definition would be machine- 
dependent
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Operational Semantics (continued)

• A better alternative: A complete computer 
simulation 

• The process: 
– Build a translator (translates source code to the 
machine code of an idealised computer) 

– Build a simulator for the idealised computer 
• Evaluation of operational semantics: 

– Good if used informally (language manuals, etc.) 
– Extremely complex if used formally (e.g., VDL), it 
was used for describing semantics of PL/I.
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Operational Semantics (continued)
• Uses of operational semantics: 
   - Language manuals and textbooks 
   - Teaching programming languages 

• Two different levels of uses of operational semantics: 
   - Natural operational semantics 
   - Structural operational semantics 

• Evaluation 
   - Good if used informally (language  
      manuals, etc.) 
   - Extremely complex if used formally  (e.g.,VDL) 
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C Statement 

for(expr1; expr2; expr3) { . . . 

} 

__________________________

Meaning 

expr1;  
loop: if expr2 == 0 goto out 

... expr3; goto loop 

out: . . . 



Denotational Semantics

• Based on recursive function theory 
• The most abstract semantics description 
method 

• Originally developed by Scott and Strachey 
(1970)
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Denotational Semantics - continued

• The process of building a denotational 
specification for a language: 

    - Define a mathematical object for each language 
        entity 

– Define a function that maps instances of the 
language entities onto instances of the 
corresponding mathematical objects 

• The meaning of language constructs are 
defined by only the values of the program's 
variables
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Denotational Semantics: program state

• The state of a program is the values of all 
its current variables 

      s = {<i1, v1>, <i2, v2>, …, <in, vn>} 

• Let VARMAP be a function that, when given 
a variable name and a state, returns the 
current value of the variable 

         VARMAP(ij, s) = vj
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<bin_num> → '0' |'1' 

 |<bin_num> '0' 

 |<bin_num> '1' 
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construct. In denotational semantics, programming language constructs are 
mapped to mathematical objects, either sets or, more often, functions. How-
ever, unlike operational semantics, denotational semantics does not model the 
step-by-step computational processing of programs.

3.5.2.1 Two Simple Examples

We use a very simple language construct, character string representations of 
binary numbers, to introduce the denotational method. The syntax of such 
binary numbers can be described by the following grammar rules:

<bin_num> → '0'
                      | '1'
                      | <bin_num>  '0'
                      | <bin_num>  '1'

A parse tree for the example binary number, 110, is shown in Figure 3.9. Notice 
that we put apostrophes around the syntactic digits to show they are not math-
ematical digits. This is similar to the relationship between ASCII coded digits and 
mathematical digits. When a program reads a number as a string, it must be con-
verted to a mathematical number before it can be used as a value in the program.

<bin_num>

<bin_num> '0'

<bin_num>

'1'

'1'

Figure 3.9

A parse tree of the 
binary number 110

The syntactic domain of the mapping function for binary numbers is the 
set of all character string representations of binary numbers. The semantic 
domain is the set of nonnegative decimal numbers, symbolized by N.

To describe the meaning of binary numbers using denotational semantics, 
we associate the actual meaning (a decimal number) with each rule that has a 
single terminal symbol as its RHS.

In our example, decimal numbers must be associated with the first two 
grammar rules. The other two grammar rules are, in a sense, computational 
rules, because they combine a terminal symbol, to which an object can be 
associated, with a nonterminal, which can be expected to represent some 
construct. Presuming an evaluation that progresses upward in the parse tree, 

A parse tree for the example binary number, 110 

Mbin('0') = 0  
Mbin('1') = 1  
Mbin(<bin_num> '0') = 2 * Mbin(<bin_num>) 

Mbin(<bin_num> '1') = 2 * Mbin(<bin_num>) + 1 
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the nonterminal in the right side would already have its meaning attached. 
So, a syntax rule with a nonterminal as its RHS would require a function that 
computed the meaning of the LHS, which represents the meaning of the 
complete RHS.

The semantic function, named Mbin, maps the syntactic objects, as 
described in the previous grammar rules, to the objects in N, the set of non-
negative decimal numbers. The function Mbin is defined as follows:

Mbin('0') = 0
Mbin('1') = 1
Mbin(<bin_num> '0') = 2 * Mbin(<bin_num>)
Mbin(<bin_num> '1') = 2 * Mbin(<bin_num>) + 1

The meanings, or denoted objects (which in this case are decimal numbers), 
can be attached to the nodes of the parse tree shown on the previous page, 
yielding the tree in Figure 3.10. This is syntax-directed semantics. Syntactic 
entities are mapped to mathematical objects with concrete meaning.

<bin_num>

<bin_num> '0'

<bin_num>

'1'

'1'1

3

6Figure 3.10

A parse tree with 
denoted objects for 110

In part because we need it later, we now show a similar example for describ-
ing the meaning of syntactic decimal literals. In this case, the syntactic domain 
is the set of character string representations of decimal numbers. The semantic 
domain is once again the set N.

<dec_num> → '0'|'1'|'2'|'3'|'4'|'5'|'6'|'7''8'|'9'
             |<dec_num> ('0'|'1'|'2'|'3'|'4'|'5'|'6'|'7'|'8'|'9')

The denotational mappings for these syntax rules are

Mdec('0') = 0, Mdec('1') = 1, Mdec('2') = 2, . . ., Mdec('9') = 9
Mdec(<dec_num> '0') = 10 * Mdec(<dec_num>)
Mdec(<dec_num> '1') = 10 * Mdec(<dec_num>) + 1
. . .
Mdec(<dec_num> '9') = 10 * Mdec(<dec_num>) + 9



Decimal Numbers

<dec_num> →  '0' | '1' | '2' | '3' | '4' | '5' |  
              '6' | '7' | '8' | '9' |  
              <dec_num> ('0' | '1' | '2' | '3' | 
                         '4' | '5' | '6' | '7' |  
                         '8' | '9') 

Mdec('0') = 0,  Mdec ('1') = 1, …,  Mdec ('9') = 9 

Mdec (<dec_num> '0') = 10 * Mdec (<dec_num>) 

Mdec (<dec_num> '1’) = 10 * Mdec (<dec_num>) + 1 

… 
Mdec (<dec_num> '9') = 10 * Mdec (<dec_num>) + 9
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Expressions

• Map expressions onto Z  ∪ {error} 
• We assume expressions are decimal 
numbers, variables, or binary expressions 
having one arithmetic operator and two 
operands, each of which can be an 
expression
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<expr> → <dec_num> | <var> | <binary_expr>  
<binary_expr> → <left_expr> <operator> <right_expr>  
<left_expr> → <dec_num> | <var> 
<right_expr> → <dec_num> | <var>  
<operator> → + | * 



Expressions

Me(<expr>, s) Δ= 
    case <expr> of 
      <dec_num> => Mdec(<dec_num>, s) 
      <var> =>  
           if VARMAP(<var>, s) == undef 
                then error 
                else VARMAP(<var>, s) 
     <binary_expr> =>  
          if (Me(<binary_expr>.<left_expr>, s) == undef 
                OR Me(<binary_expr>.<right_expr>, s) = 
                              undef) 
               then error 

   else 
   if (<binary_expr>.<operator> == '+' then 
      Me(<binary_expr>.<left_expr>, s) +  
             Me(<binary_expr>.<right_expr>, s) 
   else Me(<binary_expr>.<left_expr>, s) *  
       Me(<binary_expr>.<right_expr>, s) 
...
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Assignment Statements

• Maps state sets to state sets U {error} 

Ma(x := E, s) Δ= 

    if Me(E, s) == error 

       then error 
       else s’ =         

{<i1,v1’>,<i2,v2’>,...,<in,vn’>}, 

               where for j = 1, 2, ..., n, 
                   if ij == x 

                     then vj’ = Me(E, s)  

                     else vj’ = VARMAP(ij, s)
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Logical Pretest Loops

• Maps state sets to state sets U {error} 

 Ml(while B do L, s) Δ=  
    if Mb(B, s) == undef 

        then error 
        else if Mb(B, s) == false 

            then s 
            else if Msl(L, s) == error 

                  then error 
                  else Ml(while B do L, Msl(L, s))
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Loop Meaning

• The meaning of the loop is the value of the program 
variables after the statements in the loop have been 
executed the prescribed number of  times, assuming 
there have been no errors 

• In essence, the loop has been converted from  iteration 
to recursion, where the recursive control  is 
mathematically defined by other recursive state mapping 
functions 

    - Recursion, when compared to iteration, is easier 
        to describe with mathematical rigour
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Evaluation of Denotational Semantics

• Can be used to prove the correctness of 
programs 

• Provides a rigorous way to think about 
programs 

• Can be an aid to language design 
• Has been used in compiler generation systems  
• Because of its complexity, it is of little use to 
language users

Copyright © 2015 Pearson. All rights reserved. 20



Copyright © 2015 Pearson. All rights reserved. 21

Axiomatic Semantics

• Based on formal logic (predicate calculus) 
• Original purpose: formal program verification 
• Axioms or inference rules are defined for 
each statement type in the language (to 
allow transformations of logic expressions 
into more formal logic expressions) 

• The logic expressions are called assertions
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Axiomatic Semantics (continued)

• An assertion before a statement (a 
precondition) states the relationships and 
constraints among variables that are true at 
that point in execution 

• An assertion following a statement is a  
postcondition 

• A weakest precondition is the least restrictive 
precondition that will guarantee the 
postcondition
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Axiomatic Semantics Form

• Pre-, post form:  {P} statement {Q} 
• {P} S {Q} 

• An example 
– a = b + 1  {a > 1} 
– One possible precondition: {b > 10} 
– Weakest precondition:        {b > 0}
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Program Proof Process

• The postcondition for the entire program is 
the desired result 
– Work back through the program to the first 
statement.  If the precondition on the first 
statement is the same as the program 
specification, the program is correct.
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Precondition and postcondition assertions are presented in braces to distin-
guish them from parts of program statements. One possible precondition for 
this statement is {x > 10}.

In axiomatic semantics, the meaning of a specific statement is defined by 
its precondition and its postcondition. In effect, the two assertions specify pre-
cisely the effect of executing the statement.

In the following subsections, we focus on correctness proofs of statements 
and programs, which is a common use of axiomatic semantics. The more gen-
eral concept of axiomatic semantics is to state precisely the meaning of state-
ments and programs in terms of logic expressions. Program verification is one 
application of axiomatic descriptions of languages.

3.5.3.2 Weakest Preconditions

The weakest precondition is the least restrictive precondition that will guar-
antee the validity of the associated postcondition. For example, in the state-
ment and postcondition given in Section 3.5.3.1, {x > 10}, {x > 50}, and 
{x > 1000} are all valid preconditions. The weakest of all preconditions in 
this case is {x > 0}.

If the weakest precondition can be computed from the most general 
postcondition for each of the statement types of a language, then the pro-
cesses used to compute these preconditions provide a concise description of 
the semantics of that language. Furthermore, correctness proofs can be con-
structed for programs in that language. A program proof is begun by using the 
characteristics of the results of the program’s execution as the postcondition 
of the last statement of the program. This postcondition, along with the last 
statement, is used to compute the weakest precondition for the last statement. 
This precondition is then used as the postcondition for the second last state-
ment. This process continues until the beginning of the program is reached. 
At that point, the precondition of the first statement states the conditions 
under which the program will compute the desired results. If these conditions 
are implied by the input specification of the program, the program has been 
verified to be correct.

An inference rule is a method of inferring the truth of one assertion on 
the basis of the values of other assertions. The general form of an inference 
rule is as follows:

S1, S2, c , Sn
S

This rule states that if S1, S2, . . . , and Sn are true, then the truth of S can be 
inferred. The top part of an inference rule is called its antecedent; the bottom 
part is called its consequent.

An axiom is a logical statement that is assumed to be true. Therefore, an 
axiom is an inference rule without an antecedent.

For some program statements, the computation of a weakest precondition 
from the statement and a postcondition is simple and can be specified by an 

Inference Rules

» This rule states that if S1, S2, . . . , and Sn 
are true, then the truth of S can be inferred. 

» The top part of an inference rule is called its 
antecedent; the bottom part is called its 
consequent.  

» An axiom is a logical statement that is 
assumed to be true. Therefore, an axiom is 
an inference rule without an antecedent.
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Axiomatic Semantics: Assignment

• An axiom for assignment statements: 
P = Qx—>E

The Precondition P is computed as Q with all instances of x replaced by E. 

•   (x = E): {Qx->E}  x = E  {Q} 
• Example: 

a = b / 2 - 1 {a < 10}  

the weakest precondition is computed by substituting b / 2 - 1 for a in the 

postcondition {a < 10}, as follows: 

b / 2 - 1 < 10 

b < 22 
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The Rule of Consequence

P’ ==> P, means that P ︎’ ︎ implies the assertion P, 

In other words, the rule of consequence says that a postcondition can 
always be weakened and a precondition can always be strengthened.

ex: x = x - 3 {x > 0}, you can infer the precondition to be: {x > 3}, 

if it turns out to be: {x > 5} x = x - 3 {x > 0}, its alright.

}{Q' S }{P'
Q'   Q P,  P' {Q}, S {P} ⇒⇒
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Axiomatic Semantics: Sequences

• An inference rule for sequences of the form 
S1; S2 

 {P1} S1 {P2} 
 {P2} S2 {P3}

{P3} S2 S1; {P1}
{P3} S2 {P2} {P2}, S1 {P1}

ex: 
S1 => y = 3 * x + 1;
S2 => x = y + 3;{x < 10}

therefore {Y < 7} is precondition to S2,  
and postcondition to S1.

therefore {x < 2} is precondition to S1.

S1 => {x < 2} y = 3 * x + 1; {Y < 7}
S2 => {Y < 7} x = y + 3;     {x < 10}



• An inference rules for selection 
   - if B then S1 else S2 

    {B and P} S1 {Q}, {(not B) and P} S2 {Q} 
           {P} if B then S1 else S2 {Q}

Axiomatic Semantics: Selection
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ex: 
if x > 0 then y=y- 1 

else y=y+ 1  

{y > 0} 

therefore {Y > 1} is precondition to then  
clause, and {y > -1} to the else clause

because {y > 1} => {y > -1}, the rule of consequence  
allows us to use {y > 1} for the precondition of the whole selection 
statement. 



• An inference rule for logical pretest loops 
  
   {P} while B do S end {Q} 
   

  
 where I is the loop invariant (the inductive 

hypothesis).
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Axiomatic Semantics: Loops

B)}(not  and {I S do B  while{I}
{I} S B) and (I
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Axiomatic Semantics: Axioms

• Characteristics of the loop invariant: I must 
meet the following conditions: 
– P => I    -- the loop invariant must be true initially 

– {I} B {I}   -- evaluation of the Boolean must not change the validity of I 

– {I and B} S {I} -- I is not changed by executing the body of the loop 
– (I and (not B)) => Q  -- if I is true and B is false, Q is implied 

– The loop terminates   -- can be difficult to prove
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Loop Invariant

• The loop invariant I is a weakened version 
of the loop postcondition, and it is also a 
precondition. 

• I must be weak enough to be satisfied prior 
to the beginning of the loop, but when 
combined with the loop exit condition, it 
must be strong enough to force the truth of 
the postcondition
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Example:

» To find I, the loop postcondition Q is used to 
compute preconditions for several different numbers 
of iterations of the loop body, starting with none.  

wp(statement, postcondition) = precondition 

A wp function is often called a predicate transformer,

Ex:

while y <> x do y = y + 1 end {y = x} 

For zero iterations, the weakest precondition is, obviously, : {y = x}  
For one iteration, it is: wp(y = y + 1, {y = x}) = {y + 1 = x}, or {y = x - 1}  
For two iterations, it is: wp(y = y + 1, {y = x - 1})={y + 1 = x - 1}, or {y = x - 2}  
For three iterations, it is: wp(y = y + 1, {y = x - 2})={y + 1 = x - 2}, or {y = x – 3}  
It is now obvious that {y <= x} will suffice for cases of zero or more iterations, and 
can be used as loop invariant. 
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Evaluation of Axiomatic Semantics

• Developing axioms or inference rules for all 
of the statements in a language is difficult 

• It is a good tool for correctness proofs, and 
an excellent framework for reasoning about  
programs, but it is not as useful for 
language users and compiler writers 

• Its usefulness in describing the meaning of a 
programming language is limited for 
language users or compiler writers
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Denotation Semantics vs Operational 
Semantics

• In operational semantics, the state changes 
are defined by coded algorithms 

• In denotational semantics, the state changes 
are defined by rigorous mathematical 
functions


