
ISBN 0-321-49362-1

Chapter 3

Describing Syntax
and Semantics

Copyright © 2015 Pearson. All rights reserved. 2

Chapter 3 Topics

• Describing the Meanings of Programs:
Dynamic Semantics

Copyright © 2015 Pearson. All rights reserved. 3

Semantics

• There is no single widely acceptable notation
or formalism for describing semantics

• Several needs for a methodology and
notation for semantics:
– Programmers need to know what statements mean
– Compiler writers must know exactly what language

constructs do
– Correctness proofs would be possible
– Compiler generators would be possible
– Designers could detect ambiguities and inconsistencies

4

Three Major Classes of Approaches
» Operational Semantics

» the execution of the language is described directly (rather
than by translation) ==> Interpretation.

» Define an abstract machine, then give meaning to the
execution of statements (entire machine states’
transitions)

» Denotational Semantics
» describing the meaning mathematically using recursive

functions (State of variables only)
» Axiomatic Semantics

» Define the meaning of statements by describing the
logical axioms that apply to them: predicate calculus to
prove the correctness (State of relevant variables only)

Operational Semantics 

• Operational Semantics
– Describe the meaning of a program by executing
its statements on a machine, either simulated or
actual. The change in the state of the machine
(memory, registers, etc.) defines the meaning of
the statement

• To use operational semantics for a high-
level language, a virtual machine is needed

Copyright © 2015 Pearson. All rights reserved. 5

Copyright © 2015 Pearson. All rights reserved. 6

Operational Semantics

• A hardware pure interpreter would be too
expensive

• A software pure interpreter also has
problems
– The detailed characteristics of the particular
computer would make actions difficult to
understand

– Such a semantic definition would be machine-
dependent

Copyright © 2015 Pearson. All rights reserved. 7

Operational Semantics (continued)

• A better alternative: A complete computer
simulation

• The process:
– Build a translator (translates source code to the
machine code of an idealised computer)

– Build a simulator for the idealised computer
• Evaluation of operational semantics:

– Good if used informally (language manuals, etc.)
– Extremely complex if used formally (e.g., VDL), it
was used for describing semantics of PL/I.

Copyright © 2015 Pearson. All rights reserved. 8

Operational Semantics (continued)
• Uses of operational semantics:
 - Language manuals and textbooks
 - Teaching programming languages

• Two different levels of uses of operational semantics:
 - Natural operational semantics
 - Structural operational semantics

• Evaluation
 - Good if used informally (language
 manuals, etc.)
 - Extremely complex if used formally (e.g.,VDL)

9

C Statement

for(expr1; expr2; expr3) { . . .

}

Meaning

expr1;  
loop: if expr2 == 0 goto out

... expr3; goto loop

out: . . .

Denotational Semantics

• Based on recursive function theory
• The most abstract semantics description
method

• Originally developed by Scott and Strachey
(1970)

Copyright © 2015 Pearson. All rights reserved. 10

Denotational Semantics - continued

• The process of building a denotational
specification for a language:

 - Define a mathematical object for each language
 entity

– Define a function that maps instances of the
language entities onto instances of the
corresponding mathematical objects

• The meaning of language constructs are
defined by only the values of the program's
variables

Copyright © 2015 Pearson. All rights reserved. 11

Denotational Semantics: program state

• The state of a program is the values of all
its current variables

 s = {<i1, v1>, <i2, v2>, …, <in, vn>}

• Let VARMAP be a function that, when given
a variable name and a state, returns the
current value of the variable

 VARMAP(ij, s) = vj

Copyright © 2015 Pearson. All rights reserved. 12

<bin_num> → '0' |'1'

 |<bin_num> '0'

 |<bin_num> '1'

3.5 Describing the Meanings of Programs: Dynamic Semantics 143

construct. In denotational semantics, programming language constructs are
mapped to mathematical objects, either sets or, more often, functions. How-
ever, unlike operational semantics, denotational semantics does not model the
step-by-step computational processing of programs.

3.5.2.1 Two Simple Examples

We use a very simple language construct, character string representations of
binary numbers, to introduce the denotational method. The syntax of such
binary numbers can be described by the following grammar rules:

<bin_num> → '0'
 | '1'
 | <bin_num> '0'
 | <bin_num> '1'

A parse tree for the example binary number, 110, is shown in Figure 3.9. Notice
that we put apostrophes around the syntactic digits to show they are not math-
ematical digits. This is similar to the relationship between ASCII coded digits and
mathematical digits. When a program reads a number as a string, it must be con-
verted to a mathematical number before it can be used as a value in the program.

<bin_num>

<bin_num> '0'

<bin_num>

'1'

'1'

Figure 3.9

A parse tree of the
binary number 110

The syntactic domain of the mapping function for binary numbers is the
set of all character string representations of binary numbers. The semantic
domain is the set of nonnegative decimal numbers, symbolized by N.

To describe the meaning of binary numbers using denotational semantics,
we associate the actual meaning (a decimal number) with each rule that has a
single terminal symbol as its RHS.

In our example, decimal numbers must be associated with the first two
grammar rules. The other two grammar rules are, in a sense, computational
rules, because they combine a terminal symbol, to which an object can be
associated, with a nonterminal, which can be expected to represent some
construct. Presuming an evaluation that progresses upward in the parse tree,

A parse tree for the example binary number, 110

Mbin('0') = 0  
Mbin('1') = 1  
Mbin(<bin_num> '0') = 2 * Mbin(<bin_num>)

Mbin(<bin_num> '1') = 2 * Mbin(<bin_num>) + 1

144 Chapter 3 Describing Syntax and Semantics

the nonterminal in the right side would already have its meaning attached.
So, a syntax rule with a nonterminal as its RHS would require a function that
computed the meaning of the LHS, which represents the meaning of the
complete RHS.

The semantic function, named Mbin, maps the syntactic objects, as
described in the previous grammar rules, to the objects in N, the set of non-
negative decimal numbers. The function Mbin is defined as follows:

Mbin('0') = 0
Mbin('1') = 1
Mbin(<bin_num> '0') = 2 * Mbin(<bin_num>)
Mbin(<bin_num> '1') = 2 * Mbin(<bin_num>) + 1

The meanings, or denoted objects (which in this case are decimal numbers),
can be attached to the nodes of the parse tree shown on the previous page,
yielding the tree in Figure 3.10. This is syntax-directed semantics. Syntactic
entities are mapped to mathematical objects with concrete meaning.

<bin_num>

<bin_num> '0'

<bin_num>

'1'

'1'1

3

6Figure 3.10

A parse tree with
denoted objects for 110

In part because we need it later, we now show a similar example for describ-
ing the meaning of syntactic decimal literals. In this case, the syntactic domain
is the set of character string representations of decimal numbers. The semantic
domain is once again the set N.

<dec_num> → '0'|'1'|'2'|'3'|'4'|'5'|'6'|'7''8'|'9'
 |<dec_num> ('0'|'1'|'2'|'3'|'4'|'5'|'6'|'7'|'8'|'9')

The denotational mappings for these syntax rules are

Mdec('0') = 0, Mdec('1') = 1, Mdec('2') = 2, . . ., Mdec('9') = 9
Mdec(<dec_num> '0') = 10 * Mdec(<dec_num>)
Mdec(<dec_num> '1') = 10 * Mdec(<dec_num>) + 1
. . .
Mdec(<dec_num> '9') = 10 * Mdec(<dec_num>) + 9

Decimal Numbers

<dec_num> → '0' | '1' | '2' | '3' | '4' | '5' |
 '6' | '7' | '8' | '9' |
 <dec_num> ('0' | '1' | '2' | '3' |
 '4' | '5' | '6' | '7' |
 '8' | '9')

Mdec('0') = 0, Mdec ('1') = 1, …, Mdec ('9') = 9

Mdec (<dec_num> '0') = 10 * Mdec (<dec_num>)

Mdec (<dec_num> '1’) = 10 * Mdec (<dec_num>) + 1

…
Mdec (<dec_num> '9') = 10 * Mdec (<dec_num>) + 9

Copyright © 2015 Pearson. All rights reserved. 14

Expressions

• Map expressions onto Z ∪ {error}
• We assume expressions are decimal
numbers, variables, or binary expressions
having one arithmetic operator and two
operands, each of which can be an
expression

Copyright © 2015 Pearson. All rights reserved. 15

<expr> → <dec_num> | <var> | <binary_expr>  
<binary_expr> → <left_expr> <operator> <right_expr>  
<left_expr> → <dec_num> | <var> 
<right_expr> → <dec_num> | <var>  
<operator> → + | *

Expressions

Me(<expr>, s) Δ=
 case <expr> of
 <dec_num> => Mdec(<dec_num>, s)
 <var> =>
 if VARMAP(<var>, s) == undef
 then error
 else VARMAP(<var>, s)
 <binary_expr> =>
 if (Me(<binary_expr>.<left_expr>, s) == undef
 OR Me(<binary_expr>.<right_expr>, s) =
 undef)
 then error

 else
 if (<binary_expr>.<operator> == '+' then
 Me(<binary_expr>.<left_expr>, s) +
 Me(<binary_expr>.<right_expr>, s)
 else Me(<binary_expr>.<left_expr>, s) *
 Me(<binary_expr>.<right_expr>, s)
...

Copyright © 2015 Pearson. All rights reserved. 16

Assignment Statements

• Maps state sets to state sets U {error}

Ma(x := E, s) Δ=

 if Me(E, s) == error

 then error
 else s’ =

{<i1,v1’>,<i2,v2’>,...,<in,vn’>},

 where for j = 1, 2, ..., n,
 if ij == x

 then vj’ = Me(E, s)

 else vj’ = VARMAP(ij, s)

Copyright © 2015 Pearson. All rights reserved. 17

Logical Pretest Loops

• Maps state sets to state sets U {error}

 Ml(while B do L, s) Δ=
 if Mb(B, s) == undef

 then error
 else if Mb(B, s) == false

 then s
 else if Msl(L, s) == error

 then error
 else Ml(while B do L, Msl(L, s))

Copyright © 2015 Pearson. All rights reserved. 18

Loop Meaning

• The meaning of the loop is the value of the program
variables after the statements in the loop have been
executed the prescribed number of times, assuming
there have been no errors

• In essence, the loop has been converted from iteration
to recursion, where the recursive control is
mathematically defined by other recursive state mapping
functions

 - Recursion, when compared to iteration, is easier
 to describe with mathematical rigour

Copyright © 2015 Pearson. All rights reserved. 19

Evaluation of Denotational Semantics

• Can be used to prove the correctness of
programs

• Provides a rigorous way to think about
programs

• Can be an aid to language design
• Has been used in compiler generation systems
• Because of its complexity, it is of little use to
language users

Copyright © 2015 Pearson. All rights reserved. 20

Copyright © 2015 Pearson. All rights reserved. 21

Axiomatic Semantics

• Based on formal logic (predicate calculus)
• Original purpose: formal program verification
• Axioms or inference rules are defined for
each statement type in the language (to
allow transformations of logic expressions
into more formal logic expressions)

• The logic expressions are called assertions

Copyright © 2015 Pearson. All rights reserved. 22

Axiomatic Semantics (continued)

• An assertion before a statement (a
precondition) states the relationships and
constraints among variables that are true at
that point in execution

• An assertion following a statement is a
postcondition

• A weakest precondition is the least restrictive
precondition that will guarantee the
postcondition

Copyright © 2015 Pearson. All rights reserved. 23

Axiomatic Semantics Form

• Pre-, post form: {P} statement {Q}
• {P} S {Q}

• An example
– a = b + 1 {a > 1}
– One possible precondition: {b > 10}
– Weakest precondition: {b > 0}

Copyright © 2015 Pearson. All rights reserved. 24

Program Proof Process

• The postcondition for the entire program is
the desired result
– Work back through the program to the first
statement. If the precondition on the first
statement is the same as the program
specification, the program is correct.

25

3.5 Describing the Meanings of Programs: Dynamic Semantics 149

Precondition and postcondition assertions are presented in braces to distin-
guish them from parts of program statements. One possible precondition for
this statement is {x > 10}.

In axiomatic semantics, the meaning of a specific statement is defined by
its precondition and its postcondition. In effect, the two assertions specify pre-
cisely the effect of executing the statement.

In the following subsections, we focus on correctness proofs of statements
and programs, which is a common use of axiomatic semantics. The more gen-
eral concept of axiomatic semantics is to state precisely the meaning of state-
ments and programs in terms of logic expressions. Program verification is one
application of axiomatic descriptions of languages.

3.5.3.2 Weakest Preconditions

The weakest precondition is the least restrictive precondition that will guar-
antee the validity of the associated postcondition. For example, in the state-
ment and postcondition given in Section 3.5.3.1, {x > 10}, {x > 50}, and
{x > 1000} are all valid preconditions. The weakest of all preconditions in
this case is {x > 0}.

If the weakest precondition can be computed from the most general
postcondition for each of the statement types of a language, then the pro-
cesses used to compute these preconditions provide a concise description of
the semantics of that language. Furthermore, correctness proofs can be con-
structed for programs in that language. A program proof is begun by using the
characteristics of the results of the program’s execution as the postcondition
of the last statement of the program. This postcondition, along with the last
statement, is used to compute the weakest precondition for the last statement.
This precondition is then used as the postcondition for the second last state-
ment. This process continues until the beginning of the program is reached.
At that point, the precondition of the first statement states the conditions
under which the program will compute the desired results. If these conditions
are implied by the input specification of the program, the program has been
verified to be correct.

An inference rule is a method of inferring the truth of one assertion on
the basis of the values of other assertions. The general form of an inference
rule is as follows:

S1, S2, c , Sn
S

This rule states that if S1, S2, . . . , and Sn are true, then the truth of S can be
inferred. The top part of an inference rule is called its antecedent; the bottom
part is called its consequent.

An axiom is a logical statement that is assumed to be true. Therefore, an
axiom is an inference rule without an antecedent.

For some program statements, the computation of a weakest precondition
from the statement and a postcondition is simple and can be specified by an

Inference Rules

» This rule states that if S1, S2, . . . , and Sn
are true, then the truth of S can be inferred.

» The top part of an inference rule is called its
antecedent; the bottom part is called its
consequent.

» An axiom is a logical statement that is
assumed to be true. Therefore, an axiom is
an inference rule without an antecedent.

Copyright © 2015 Pearson. All rights reserved. 26

Axiomatic Semantics: Assignment

• An axiom for assignment statements:
P = Qx—>E

The Precondition P is computed as Q with all instances of x replaced by E.

• (x = E): {Qx->E} x = E {Q}
• Example: 

a = b / 2 - 1 {a < 10}  

the weakest precondition is computed by substituting b / 2 - 1 for a in the

postcondition {a < 10}, as follows:

b / 2 - 1 < 10

b < 22

27

The Rule of Consequence

P’ ==> P, means that P ︎’ ︎ implies the assertion P,

In other words, the rule of consequence says that a postcondition can
always be weakened and a precondition can always be strengthened.

ex: x = x - 3 {x > 0}, you can infer the precondition to be: {x > 3},

if it turns out to be: {x > 5} x = x - 3 {x > 0}, its alright.

}{Q' S }{P'
Q' Q P, P' {Q}, S {P} ⇒⇒

Copyright © 2015 Pearson. All rights reserved. 28

Axiomatic Semantics: Sequences

• An inference rule for sequences of the form
S1; S2

 {P1} S1 {P2}
 {P2} S2 {P3}

{P3} S2 S1; {P1}
{P3} S2 {P2} {P2}, S1 {P1}

ex:
S1 => y = 3 * x + 1;
S2 => x = y + 3;{x < 10}

therefore {Y < 7} is precondition to S2,  
and postcondition to S1.

therefore {x < 2} is precondition to S1.

S1 => {x < 2} y = 3 * x + 1; {Y < 7}
S2 => {Y < 7} x = y + 3; {x < 10}

• An inference rules for selection
 - if B then S1 else S2

 {B and P} S1 {Q}, {(not B) and P} S2 {Q}
 {P} if B then S1 else S2 {Q}

Axiomatic Semantics: Selection

Copyright © 2015 Pearson. All rights reserved. 29

ex:
if x > 0 then y=y- 1

else y=y+ 1

{y > 0}

therefore {Y > 1} is precondition to then  
clause, and {y > -1} to the else clause

because {y > 1} => {y > -1}, the rule of consequence  
allows us to use {y > 1} for the precondition of the whole selection
statement.

• An inference rule for logical pretest loops

 {P} while B do S end {Q}

 where I is the loop invariant (the inductive

hypothesis).

Copyright © 2015 Pearson. All rights reserved. 30

Axiomatic Semantics: Loops

B)}(not and {I S do B while{I}
{I} S B) and (I

Copyright © 2015 Pearson. All rights reserved. 31

Axiomatic Semantics: Axioms

• Characteristics of the loop invariant: I must
meet the following conditions:
– P => I -- the loop invariant must be true initially

– {I} B {I} -- evaluation of the Boolean must not change the validity of I

– {I and B} S {I} -- I is not changed by executing the body of the loop
– (I and (not B)) => Q -- if I is true and B is false, Q is implied

– The loop terminates -- can be difficult to prove

Copyright © 2015 Pearson. All rights reserved. 32

Loop Invariant

• The loop invariant I is a weakened version
of the loop postcondition, and it is also a
precondition.

• I must be weak enough to be satisfied prior
to the beginning of the loop, but when
combined with the loop exit condition, it
must be strong enough to force the truth of
the postcondition

33

Example:

» To find I, the loop postcondition Q is used to
compute preconditions for several different numbers
of iterations of the loop body, starting with none.  

wp(statement, postcondition) = precondition

A wp function is often called a predicate transformer,

Ex:

while y <> x do y = y + 1 end {y = x}

For zero iterations, the weakest precondition is, obviously, : {y = x}  
For one iteration, it is: wp(y = y + 1, {y = x}) = {y + 1 = x}, or {y = x - 1}  
For two iterations, it is: wp(y = y + 1, {y = x - 1})={y + 1 = x - 1}, or {y = x - 2}  
For three iterations, it is: wp(y = y + 1, {y = x - 2})={y + 1 = x - 2}, or {y = x – 3}  
It is now obvious that {y <= x} will suffice for cases of zero or more iterations, and
can be used as loop invariant.

Copyright © 2015 Pearson. All rights reserved. 34

Evaluation of Axiomatic Semantics

• Developing axioms or inference rules for all
of the statements in a language is difficult

• It is a good tool for correctness proofs, and
an excellent framework for reasoning about
programs, but it is not as useful for
language users and compiler writers

• Its usefulness in describing the meaning of a
programming language is limited for
language users or compiler writers

Copyright © 2015 Pearson. All rights reserved. 35

Denotation Semantics vs Operational
Semantics

• In operational semantics, the state changes
are defined by coded algorithms

• In denotational semantics, the state changes
are defined by rigorous mathematical
functions

