Chapter 3

Describing Syntax CONCEPTS OF
) PROGRAMMING LANGUAGES 1:1/¢
and Semantics

ISBN 0-321-49362-1

Chapter 3 Topics

Describing the Meanings of Programs:
Dynamic Semantics

Copyright © 2015 Pearson. All rights reserved.

Semantics

There is no single widely acceptable notation
or formalism for describing semantics

Several needs for a methodology and

notation for semantics:

- Programmers need to know what statements mean

— Compiler writers must know exactly what language
constructs do

- Correctness proofs would be possible

— Compiler generators would be possible

- Designers could detect ambiguities and inconsistencies

Copyright © 2015 Pearson. All rights reserved.

Three Major Classes of Approaches

» Operational Semantics

» the execution of the language is described directly (rather
than by translation) ==> Interpretation.

» Define an abstract machine, then give meaning to the
execution of statements (entire machine states’
transitions)

» Denotational Semantics

» describing the meaning mathematically using recursive
functions (State of variables only)

» Axiomatic Semantics

» Define the meaning of statements by describing the
logical axioms that apply to them: predicate calculus to
prove the correctness (State of relevant variables only)

Operational Semantics

Operational Semantics

- Describe the meaning of a program by executing
its statements on a machine, either simulated or
actual. The change in the state of the machine
(memory, registers, etc.) defines the meaning of
the statement

- To use operational semantics for a high-
level language, a virtual machine is needed

Copyright © 2015 Pearson. All rights reserved.

Operational Semantics

- A hardware pure interpreter would be too
expensive

- A software pure interpreter also has

problems

- The detailed characteristics of the particular

computer would make actions difficult to
understand

— Such a semantic definition would be machine-
dependent

Copyright © 2015 Pearson. All rights reserved.

Operational Semantics (continued)

- A better alternative: A complete computer
simulation

- The process:
- Build a translator (translates source code to the
machine code of an idealised computer)
- Build a simulator for the idealised computer

- Evaluation of operational semantics:
- Good if used informally (language manuals, etc.)

- Extremely complex if used formally (e.g., VDL), it
was used for describing semantics of PL/I.

Copyright © 2015 Pearson. All rights reserved.

Operational Semantics (continued)

- Uses of operational semantics:
- Language manuals and textbooks
- Teaching programming languages

- Two different levels of uses of operational semantics:
- Natural operational semantics
- Structural operational semantics

- Evaluation
- Good if used informally (language
manuals, etc.)
- Extremely complex if used formally (e.g.,VDL)

Copyright © 2015 Pearson. All rights reserved.

C Statement
for (exprl; expr2; expr3d) {

}

Meaning

exprl ;
loop: if expr2 == (0 goto out

...expr3; goto loop

out: ...

Denotational Semantics

- Based on recursive function theory

- The most abstract semantics description
method

- Originally developed by Scott and Strachey
(1970)

Copyright © 2015 Pearson. All rights reserved.

10

Denotational Semantics - continued

- The process of building a denotational
specification for a language:

- Define a mathematical object for each language
entity
- Define a function that maps instances of the
language entities onto instances of the
corresponding mathematical objects
- The meaning of language constructs are
defined by only the values of the program’'s

variables

Copyright © 2015 Pearson. All rights reserved.

11

Denotational Semantics: program state

- The state of a program is the values of all

its current variables
s = {<1,, v>, <1,, v,>, .., <1, Vv >}

- Let VARMAP be a function that, when given
a variable name and a state, returns the
current value of the variable

VARMAP (i,, s) = v,

Copyright © 2015 Pearson. All rights reserved. 12

A parse tree for the example binary number, 110

<bin_num>
<bin_num>— '0"' |'1"’ /\
| <bin_num> '0" _
<bin_num> 'O
| <bin_num> '1" /\
<bin_num> "1
1 l 1
<b|n num>

Mbin('ol) =0
Myn('1') =1

My, (<bin_num> '1") = 2 * M,, (<bin_num>) + 1 /\

<b|n num>

I
N
*

Ill

Decimal Numbers

<dec num> — '0O' | '1"'" ['2"'" ['3"'" | "4' | '5' |
'6' | '7' I l8| | 191 |
<dec num> ('0' | "1'" ['2"'" | '3' |
141 | l5l | |6l | |7l |
l8| | '9')
My.('0") =0, M., ('1") =1, .., My, ('9") =9
My.. (<dec num> '0"') = 10 * M . (<dec num>)
My.. (<dec num> '1l’") = 10 * M . (<dec num>) + 1
My.. (<dec num> '9') = 10 * M __ (<dec num>) + 9

Copyright © 2015 Pearson. All rights reserved.

Expressions

Map expressions onto Z U {error}

We assume expressions are decimal
numbers, variables, or binary expressions
having one arithmetic operator and two
operands, each of which can be an
expression

<expr> — <dec_num> | <var> | <binary_expr>
<binary_expr> — <left_expr> <operator> <right_expr>
<left_expr> — <dec_num> | <var>

<right_expr> — <dec_num> | <var>

<operator> — + | *

Copyright © 2015 Pearson. All rights reserved. 15

Expressions

M, (<expr>, s) A=
case <expr> of
<dec num> => M
<var> =>
1if VARMAP (<var>, s8) == undef
then error
else VARMAP (<var>, 3s)
<binary expr> =>

gee (<dec_num>, s)

if (M, (<binary expr>.<left expr>, s) == undef
OR M, (<binary expr>.<right expr>, s) =
undef)
then error
else
1f (<binary expr>.<operator> == '+' then

M, (<binary expr>.<left expr>, s) +
M, (<binary expr>.<right expr>, s)
else M_(<binary expr>.<left expr>, s) *
M, (<binary expr>.<right expr>, s)

Copyright © 2015 Pearson. All rights reserved. 16

Assignment Statements

Maps state sets to state sets U {error}

M, (x := E, s) A=
if M_(E, s) == error
then error
else s’ =
{<i1,,vy">,<1,,v, >, ...,<1_,v ">},
where for j =1, 2, , n,
1f ij == X

then vj’ = M (E, s)

e

else vj’ = VARMAP(ij, S)

Copyright © 2015 Pearson. All rights reserved.

17

Logical Pretest Loops

Maps state sets to state sets U {error}

M, (while B do L, s) A=

if M (B, s) == undef
then error
else 1f M, (B, s) == false
then s
else 1f M, (L, s) == error

then error
else M, (while B do L, M_, (L,

Copyright © 2015 Pearson. All rights reserved.

S))

18

Loop Meaning

The meaning of the loop is the value of the program
variables after the statements in the loop have been
executed the prescribed number of times, assuming
there have been no errors

In essence, the loop has been converted from iteration
to recursion, where the recursive control s

mathematically defined by other recursive state mapping
functions

- Recursion, when compared to iteration, is easier
to describe with mathematical rigour

Copyright © 2015 Pearson. All rights reserved. 19

Evaluation of Denotational Semantics

- Can be used to prove the correctness of
programs

- Provides a rigorous way to think about
Drograms

- Can be an aid to language design
- Has been used in compiler generation systems

- Because of its complexity, it is of little use to
language users

Copyright © 2015 Pearson. All rights reserved. 20

Axiomatic Semantics

- Based on formal logic (predicate calculus)
- Original purpose: formal program verification

- Axioms or inference rules are defined for
each statement type in the language (to
allow transformations of logic expressions
into more formal logic expressions)

- The logic expressions are called assertions

Copyright © 2015 Pearson. All rights reserved.

21

Axiomatic Semantics (continued)

- An assertion before a statement (a
precondition) states the relationships and
constraints among variables that are true at
that point In execution

- An assertion following a statement is a
postcondition

- A weakest precondition is the least restrictive
precondition that will guarantee the
postcondition

Copyright © 2015 Pearson. All rights reserved. 22

Axiomatic Semantics Form

- Pre-, post form: {P} statement {Q}
{P} S {Q}

- An example
-a=b + 1 {a>1}
- One possible precondition: {b > 10}
- Weakest precondition: {b > 0}

Copyright © 2015 Pearson. All rights reserved.

23

Program Proof Process

- The postcondition for the entire program is

the desired result

- Work back through the program to the first
statement. If the precondition on the first
statement is the same as the program
specification, the program is correct.

Copyright © 2015 Pearson. All rights reserved.

24

Inference Rules

S1,S2, ..., Su
S
» This rule states that if S1, S2, . .., and Sn
are true, then the truth of S can be inferred.

» The top part of an inference rule is called its
antecedent; the bottom part is called its
consequent.

» An axiom is a logical statement that is
assumed to be true. Therefore, an axiom is

an inference rule without an antecedent.
25

Axiomatic Semantics: Assignment

An axiom for assignment statements:
P= QX_>E

The Precondition P is computed as Q with all instances of x replaced by E.

x=8B:{Q.st x=E {Q}

Example:

a=b /2 -1 {a< 10}

the weakest precondition is computed by substitutingb / 2 - 1 fora inthe
postcondition {a < 10}, as follows:

b/ 2-1<10

b < 22

Copyright © 2015 Pearson. All rights reserved.

26

The Rule of Consequence

PiSQp, P =P,Q =Q
Py S1Q'

P’ ==> P, means that P* implies the assertion P,

In other words, the rule of consequence says that a postcondition can
always be weakened and a precondition can always be strengthened.

ex: X =X - 3 {x >0}, you can infer the precondition to be: {x > 3},

if 1t turns out to be: {x > 5} x =x - 3 {x >0}, its alright.

27

Axiomatic Semantics: Sequences

- An inference rule for sequences of the form

S1; S2

{P1} S1 {P2}
{P2} S2 {P3}

(P1}S1{P2}, {P2}S2 {P3}

fP1:S1;S2 {P3}

Copyright © 2015 Pearson. All rights reserved.

ex:
S1 =>y =3 * x + 1;
S2 => x =y + 3;{x < 10}

therefore {Y < 7} is precondition to S2,
and postcondition to Sl.

therefore {x < 2} is precondition to Sl.

S1 => {x < 2}y =3 *x+ 1; {Y < 7}
S2 => {Y < 7} x =y + 3; {x < 10}

28

Axiomatic Semantics: Selection

- An inference rules for selection
- if B then S1 else S/

{B and P} S1 {Q}, {(not B) and P} S2 {Q}

{P} if B then S]1 else S2 {Q}

Copyright © 2015 Pearson. All rights reserved.

ex:
if x > 0 then y=y- 1

else y=y+ 1

{y > 0}

therefore {Y > 1} is precondition to then
clause, and {y > -1} to the else clause

because {y > 1} =>{y > -1}, the rule of consequence
allows us to use {y > 1} for the precondition of the whole selection
statement.

Axiomatic Semantics: Loops

- An inference rule for logical pretest loops

{P} while B do S end {Q}

(Iand B) S {1}
{I} while Bdo S {I and (not B)}

where | is the loop invariant (the inductive
hypothesis).

Copyright © 2015 Pearson. All rights reserved.

30

Axiomatic Semantics: Axioms

Characteristics of the loop invariant: | must
meet the following conditions:

- P =>1 -- the loop invariant must be true initially

- {} B {|} -- evaluation of the Boolean must not change the validity of |
- { and B} S {|} -- | is not changed by executing the body of the loop
- (I and (nhot B)) => Q -- if I is true and B is false, Q is implied

- The lOOp terminates -- can be difficult to prove

Copyright © 2015 Pearson. All rights reserved. 31

Loop Invariant

- The loop invariant | is a weakened version

of the

loop postcondition, and it is also a

precondition.

- | must
to the

be weak enough to be satisfied prior
beginning of the loop, but when

combined with the loop exit condition, it

must be strong enough to force the truth of
the postcondition

Copyright © 2015 Pearso

n. All rights reserved. 32

Example:

» To find |, the loop postcondition Q is used to
compute preconditions for several different numbers
of iterations of the loop body, starting with none.

wp(statement, postcondition) = precondition

A wp function is often called a predicate transformer,

Ex:

while y <> x doy =y + 1 end {y = x}

For zero iterations, the weakest precondition is, obviously, : {y = x}

For one iteration, itis: wp(y =y + 1,{y=x})={y+ 1 =x},or{y=x-1}

For two iterations, itis: wp(y =y + I, {y=x-1})={y+ 1 =x-1},or{y=x-2}
For three iterations, itis: wp(y =y + 1, {y=x-2})={y+ 1 =x-2},or {y=x-3}

It is now obvious that {y <= x} will suffice for cases of zero or more iterations, and
can be used as loop invariant.

33

Evaluation of Axiomatic Semantics

- Developing axioms or inference rules for all
of the statements in a language is difficult

- It is a good tool for correctness proofs, and
an excellent framework for reasoning about

programs, but it is not as useful for

anguage users and compiler writers

ts usefulness in describing the meaning of a
brogramming language is limited for
anguage users or compiler writers

Copyright © 2015 Pearson. All rights reserved. 34

Denotation Semantics vs Operational
Semantics

- In operational semantics, the state changes
are defined by coded algorithms

- In denotational semantics, the state changes
are defined by rigorous mathematical

functions

Copyright © 2015 Pearson. All rights reserved. 35

