
Raspberry Pi setup
guide

Set-up:
1. Install Pi into the case
2. Insert Micro SD into SD card holder on

underside of board. (Gold teeth of SD card
should face towards the board).

3. Connect keyboard, mouse and HDMI cable.
4. Connect power cable. Pi should load up.
5. Select Raspbian and click install
6. Connect ethernet cable.

Installing Modules:
Some modules will be useful when using the RPi. Additionally, changing some settings now, will be useful
later. Type the commands into the terminal to make each change.
To change default python from version 2, to version 3 type the following commands:
cd usr/bin
sudo rm python
sudo ln –s python3 python

I2C is a very useful protocol for interfacing with the hardware, it is disabled by default, to enable it:
sudo raspi-config
Select option “5 Interfacing options” -> “P5 I2C” -> “Yes” -> “Finish”
Similarly, System Management Bus module is a useful module for interfacing, to install the module:
sudo apt-get install python-smbus

Terminal cheat sheet:

cd (location) Changes the current directory of the terminal, e.g. ‘cd Desktop’ moves you
to the Desktop.

ls Lists all the items in current directory.

pwd Print working directory.

python filename.py Runs the file with that name in current directory using python.

geany filename.py Opens code into a text editor.

Finishes what you are writing.

Pressing UP key will bring up previous commands.

sudo Superuser do – completes command at the root level.

https://github.com/Freenove/Freenove_Super_Starter_Kit_for_Raspberry_Pi/blob/master/Tutorial.pdf
For the full instructions go to:

Sample Project 1:
Morse code coder

Hardware:
This program will take regular words as input, and output the words as Morse code by flashing the LED.
The circuit is very simple, connect the
GPIO extension shield using the grey
cables, make sure it is connected in
the orientation shown. The extension
shield is not necessary but makes the
circuits easier to understand as they
get larger. Connect the LED’s longest
leg to a 220Ω resistor, this ensures it
is at the correct voltage, this resistor
should be connected to the pin
labelled GPIO17. The short leg is
connected to ground.

Software:
Create a new python file, you can use geany – a preinstalled text editor, or any other text editor.

You need the GPIO module. GPIO stands for general
purpose input/output and this is how python can send
outputs to the LED. The time module allows you to add
pauses – useful for Morse code.

Set the LED pin to number 11.

A setup function is useful. The 3rd line sets the led pin to
be used as an output. The 4th line sets the initial output to
LOW, in this case it corresponds to LED off. ‘Setmode’
changes the numbering of the outputs. Instead of the
confusing GPIO numbers, the pins are numbered in order
(as above). You may have guessed that pin number 11
corresponds to GPIO17.

To turn the LED on, set the GPIO output to HIGH. And use
the line time.sleep() with the number of seconds you want
the program to pause in the brackets. This way you can
create a series of flashes.

git clone https://github.com/BenKinchin/rpi_code.git

To download a sample finished code, type the following command into the terminal. This will create a new
folder with the python files.

At the end of your program, run this code. It will turn off
the LED to make sure it does not stay on, as well as
releasing any GPIO resources. If you don’t do this you may
get errors when you try to reload the program.

Sample Project 2:
Morse code de-coder

Hardware:

This project requires a few more components. This component: is a Light Dependent resistor. It
decreases in resistance when light is shone upon it. The integrated circuit in the centre is PCF8591. It can
be used for analogue to digital conversion. In this circuit it is being used to read the voltage from the LDR.
The LED is not required in this circuit but is useful for testing. It is connected with a 220Ω resistor (the
others are 10㏀).

For this project you will need to import the smbus module.

Define the following variables at the beginning, these are needed to use the
PCF8591 to read the voltages.
The function analogRead will take the value from the chip. This is not the true
voltage (although that can be calculated, it is a relative scale. Now calling the

function will return the voltage.

For your turn off function, add ‘bus.close()’.

The function time.time() returns the
time. This will be useful for timing things.
Like length of Morse code flashes?

To call the function just use
analogRead(0).

Software:

